/** ****************************************************************************** * @file stm32h7xx_hal_fdcan.c * @author MCD Application Team * @brief FDCAN HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Flexible DataRate Controller Area Network * (FDCAN) peripheral: * + Initialization and de-initialization functions * + IO operation functions * + Peripheral Configuration and Control functions * + Peripheral State and Error functions ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] (#) Initialize the FDCAN peripheral using HAL_FDCAN_Init function. (#) If needed , configure the reception filters and optional features using the following configuration functions: (++) HAL_FDCAN_ConfigClockCalibration (++) HAL_FDCAN_ConfigFilter (++) HAL_FDCAN_ConfigGlobalFilter (++) HAL_FDCAN_ConfigExtendedIdMask (++) HAL_FDCAN_ConfigRxFifoOverwrite (++) HAL_FDCAN_ConfigFifoWatermark (++) HAL_FDCAN_ConfigRamWatchdog (++) HAL_FDCAN_ConfigTimestampCounter (++) HAL_FDCAN_EnableTimestampCounter (++) HAL_FDCAN_DisableTimestampCounter (++) HAL_FDCAN_ConfigTimeoutCounter (++) HAL_FDCAN_EnableTimeoutCounter (++) HAL_FDCAN_DisableTimeoutCounter (++) HAL_FDCAN_ConfigTxDelayCompensation (++) HAL_FDCAN_EnableTxDelayCompensation (++) HAL_FDCAN_DisableTxDelayCompensation (++) HAL_FDCAN_EnableISOMode (++) HAL_FDCAN_DisableISOMode (++) HAL_FDCAN_EnableEdgeFiltering (++) HAL_FDCAN_DisableEdgeFiltering (++) HAL_FDCAN_TT_ConfigOperation (++) HAL_FDCAN_TT_ConfigReferenceMessage (++) HAL_FDCAN_TT_ConfigTrigger (#) Start the FDCAN module using HAL_FDCAN_Start function. At this level the node is active on the bus: it can send and receive messages. (#) The following Tx control functions can only be called when the FDCAN module is started: (++) HAL_FDCAN_AddMessageToTxFifoQ (++) HAL_FDCAN_EnableTxBufferRequest (++) HAL_FDCAN_AbortTxRequest (#) After having submitted a Tx request in Tx Fifo or Queue, it is possible to get Tx buffer location used to place the Tx request thanks to HAL_FDCAN_GetLatestTxFifoQRequestBuffer API. It is then possible to abort later on the corresponding Tx Request using HAL_FDCAN_AbortTxRequest API. (#) When a message is received into the FDCAN message RAM, it can be retrieved using the HAL_FDCAN_GetRxMessage function. (#) Calling the HAL_FDCAN_Stop function stops the FDCAN module by entering it to initialization mode and re-enabling access to configuration registers through the configuration functions listed here above. (#) All other control functions can be called any time after initialization phase, no matter if the FDCAN module is started or stopped. *** Polling mode operation *** ============================== [..] (#) Reception and transmission states can be monitored via the following functions: (++) HAL_FDCAN_IsRxBufferMessageAvailable (++) HAL_FDCAN_IsTxBufferMessagePending (++) HAL_FDCAN_GetRxFifoFillLevel (++) HAL_FDCAN_GetTxFifoFreeLevel *** Interrupt mode operation *** ================================ [..] (#) There are two interrupt lines: line 0 and 1. By default, all interrupts are assigned to line 0. Interrupt lines can be configured using HAL_FDCAN_ConfigInterruptLines function. (#) Notifications are activated using HAL_FDCAN_ActivateNotification function. Then, the process can be controlled through one of the available user callbacks: HAL_FDCAN_xxxCallback. *** Callback registration *** ============================================= The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS when set to 1 allows the user to configure dynamically the driver callbacks. Use Function HAL_FDCAN_RegisterCallback() or HAL_FDCAN_RegisterXXXCallback() to register an interrupt callback. Function HAL_FDCAN_RegisterCallback() allows to register following callbacks: (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. (+) RxBufferNewMessageCallback : Rx Buffer New Message Callback. (+) HighPriorityMessageCallback : High Priority Message Callback. (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. (+) TimeoutOccurredCallback : Timeout Occurred Callback. (+) ErrorCallback : Error Callback. (+) MspInitCallback : FDCAN MspInit. (+) MspDeInitCallback : FDCAN MspDeInit. This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback, ErrorStatusCallback, TT_ScheduleSyncCallback, TT_TimeMarkCallback, TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated register callbacks: respectively HAL_FDCAN_RegisterClockCalibrationCallback(), HAL_FDCAN_RegisterTxEventFifoCallback(), HAL_FDCAN_RegisterRxFifo0Callback(), HAL_FDCAN_RegisterRxFifo1Callback(), HAL_FDCAN_RegisterTxBufferCompleCallback(), HAL_FDCAN_RegisterTxBufferAbortCallback(), HAL_FDCAN_RegisterErrorStatusCallback(), HAL_FDCAN_TT_RegisterScheduleSyncCallback(), HAL_FDCAN_TT_RegisterTimeMarkCallback(), HAL_FDCAN_TT_RegisterStopWatchCallback() and HAL_FDCAN_TT_RegisterGlobalTimeCallback(). Use function HAL_FDCAN_UnRegisterCallback() to reset a callback to the default weak function. HAL_FDCAN_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset following callbacks: (+) TxFifoEmptyCallback : Tx Fifo Empty Callback. (+) RxBufferNewMessageCallback : Rx Buffer New Message Callback. (+) HighPriorityMessageCallback : High Priority Message Callback. (+) TimestampWraparoundCallback : Timestamp Wraparound Callback. (+) TimeoutOccurredCallback : Timeout Occurred Callback. (+) ErrorCallback : Error Callback. (+) MspInitCallback : FDCAN MspInit. (+) MspDeInitCallback : FDCAN MspDeInit. For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback, TT_ScheduleSyncCallback, TT_TimeMarkCallback, TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated register callbacks: respectively HAL_FDCAN_UnRegisterClockCalibrationCallback(), HAL_FDCAN_UnRegisterTxEventFifoCallback(), HAL_FDCAN_UnRegisterRxFifo0Callback(), HAL_FDCAN_UnRegisterRxFifo1Callback(), HAL_FDCAN_UnRegisterTxBufferCompleCallback(), HAL_FDCAN_UnRegisterTxBufferAbortCallback(), HAL_FDCAN_UnRegisterErrorStatusCallback(), HAL_FDCAN_TT_UnRegisterScheduleSyncCallback(), HAL_FDCAN_TT_UnRegisterTimeMarkCallback(), HAL_FDCAN_TT_UnRegisterStopWatchCallback() and HAL_FDCAN_TT_UnRegisterGlobalTimeCallback(). By default, after the HAL_FDCAN_Init() and when the state is HAL_FDCAN_STATE_RESET, all callbacks are set to the corresponding weak functions: examples HAL_FDCAN_ErrorCallback(). Exception done for MspInit and MspDeInit functions that are reset to the legacy weak function in the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() only when these callbacks are null (not registered beforehand). if not, MspInit or MspDeInit are not null, the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() keep and use the user MspInit/MspDeInit callbacks (registered beforehand) Callbacks can be registered/unregistered in HAL_FDCAN_STATE_READY state only. Exception done MspInit/MspDeInit that can be registered/unregistered in HAL_FDCAN_STATE_READY or HAL_FDCAN_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. In that case first register the MspInit/MspDeInit user callbacks using HAL_FDCAN_RegisterCallback() before calling HAL_FDCAN_DeInit() or HAL_FDCAN_Init() function. When The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32h7xx_hal.h" #if defined(FDCAN1) /** @addtogroup STM32H7xx_HAL_Driver * @{ */ /** @defgroup FDCAN FDCAN * @brief FDCAN HAL module driver * @{ */ #ifdef HAL_FDCAN_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @addtogroup FDCAN_Private_Constants * @{ */ #define FDCAN_TIMEOUT_VALUE 10U #define FDCAN_TIMEOUT_COUNT 50U #define FDCAN_TX_EVENT_FIFO_MASK (FDCAN_IR_TEFL | FDCAN_IR_TEFF | FDCAN_IR_TEFW | FDCAN_IR_TEFN) #define FDCAN_RX_FIFO0_MASK (FDCAN_IR_RF0L | FDCAN_IR_RF0F | FDCAN_IR_RF0W | FDCAN_IR_RF0N) #define FDCAN_RX_FIFO1_MASK (FDCAN_IR_RF1L | FDCAN_IR_RF1F | FDCAN_IR_RF1W | FDCAN_IR_RF1N) #define FDCAN_ERROR_MASK (FDCAN_IR_ELO | FDCAN_IR_WDI | FDCAN_IR_PEA | FDCAN_IR_PED | FDCAN_IR_ARA) #define FDCAN_ERROR_STATUS_MASK (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO) #define FDCAN_TT_SCHEDULE_SYNC_MASK (FDCAN_TTIR_SBC | FDCAN_TTIR_SMC | FDCAN_TTIR_CSM | FDCAN_TTIR_SOG) #define FDCAN_TT_TIME_MARK_MASK (FDCAN_TTIR_RTMI | FDCAN_TTIR_TTMI) #define FDCAN_TT_GLOBAL_TIME_MASK (FDCAN_TTIR_GTW | FDCAN_TTIR_GTD) #define FDCAN_TT_DISTURBING_ERROR_MASK (FDCAN_TTIR_GTE | FDCAN_TTIR_TXU | FDCAN_TTIR_TXO | \ FDCAN_TTIR_SE1 | FDCAN_TTIR_SE2 | FDCAN_TTIR_ELC) #define FDCAN_TT_FATAL_ERROR_MASK (FDCAN_TTIR_IWT | FDCAN_TTIR_WT | FDCAN_TTIR_AW | FDCAN_TTIR_CER) #define FDCAN_ELEMENT_MASK_STDID ((uint32_t)0x1FFC0000U) /* Standard Identifier */ #define FDCAN_ELEMENT_MASK_EXTID ((uint32_t)0x1FFFFFFFU) /* Extended Identifier */ #define FDCAN_ELEMENT_MASK_RTR ((uint32_t)0x20000000U) /* Remote Transmission Request */ #define FDCAN_ELEMENT_MASK_XTD ((uint32_t)0x40000000U) /* Extended Identifier */ #define FDCAN_ELEMENT_MASK_ESI ((uint32_t)0x80000000U) /* Error State Indicator */ #define FDCAN_ELEMENT_MASK_TS ((uint32_t)0x0000FFFFU) /* Timestamp */ #define FDCAN_ELEMENT_MASK_DLC ((uint32_t)0x000F0000U) /* Data Length Code */ #define FDCAN_ELEMENT_MASK_BRS ((uint32_t)0x00100000U) /* Bit Rate Switch */ #define FDCAN_ELEMENT_MASK_FDF ((uint32_t)0x00200000U) /* FD Format */ #define FDCAN_ELEMENT_MASK_EFC ((uint32_t)0x00800000U) /* Event FIFO Control */ #define FDCAN_ELEMENT_MASK_MM ((uint32_t)0xFF000000U) /* Message Marker */ #define FDCAN_ELEMENT_MASK_FIDX ((uint32_t)0x7F000000U) /* Filter Index */ #define FDCAN_ELEMENT_MASK_ANMF ((uint32_t)0x80000000U) /* Accepted Non-matching Frame */ #define FDCAN_ELEMENT_MASK_ET ((uint32_t)0x00C00000U) /* Event type */ #define FDCAN_MESSAGE_RAM_SIZE 0x2800U #define FDCAN_MESSAGE_RAM_END_ADDRESS (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) /* Message RAM width is 4 Bytes */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @addtogroup FDCAN_Private_Variables * @{ */ static const uint8_t DLCtoBytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64}; /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup FDCAN_Private_Functions_Prototypes * @{ */ static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan); static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, const uint8_t *pTxData, uint32_t BufferIndex); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup FDCAN_Exported_Functions FDCAN Exported Functions * @{ */ /** @defgroup FDCAN_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FDCAN. (+) De-initialize the FDCAN. (+) Enter FDCAN peripheral in power down mode. (+) Exit power down mode. (+) Register callbacks. (+) Unregister callbacks. @endverbatim * @{ */ /** * @brief Initializes the FDCAN peripheral according to the specified * parameters in the FDCAN_InitTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Init(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; HAL_StatusTypeDef status; const uint32_t CvtEltSize[] = {0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7}; /* Check FDCAN handle */ if (hfdcan == NULL) { return HAL_ERROR; } /* Check FDCAN instance */ if (hfdcan->Instance == FDCAN1) { hfdcan->ttcan = (TTCAN_TypeDef *)((uint32_t)hfdcan->Instance + 0x100U); } /* Check function parameters */ assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_FRAME_FORMAT(hfdcan->Init.FrameFormat)); assert_param(IS_FDCAN_MODE(hfdcan->Init.Mode)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.AutoRetransmission)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.TransmitPause)); assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.ProtocolException)); assert_param(IS_FDCAN_NOMINAL_PRESCALER(hfdcan->Init.NominalPrescaler)); assert_param(IS_FDCAN_NOMINAL_SJW(hfdcan->Init.NominalSyncJumpWidth)); assert_param(IS_FDCAN_NOMINAL_TSEG1(hfdcan->Init.NominalTimeSeg1)); assert_param(IS_FDCAN_NOMINAL_TSEG2(hfdcan->Init.NominalTimeSeg2)); if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) { assert_param(IS_FDCAN_DATA_PRESCALER(hfdcan->Init.DataPrescaler)); assert_param(IS_FDCAN_DATA_SJW(hfdcan->Init.DataSyncJumpWidth)); assert_param(IS_FDCAN_DATA_TSEG1(hfdcan->Init.DataTimeSeg1)); assert_param(IS_FDCAN_DATA_TSEG2(hfdcan->Init.DataTimeSeg2)); } assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.StdFiltersNbr, 128U)); assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.ExtFiltersNbr, 64U)); assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo0ElmtsNbr, 64U)); if (hfdcan->Init.RxFifo0ElmtsNbr > 0U) { assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo0ElmtSize)); } assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo1ElmtsNbr, 64U)); if (hfdcan->Init.RxFifo1ElmtsNbr > 0U) { assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo1ElmtSize)); } assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxBuffersNbr, 64U)); if (hfdcan->Init.RxBuffersNbr > 0U) { assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxBufferSize)); } assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.TxEventsNbr, 32U)); assert_param(IS_FDCAN_MAX_VALUE((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr), 32U)); if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U) { assert_param(IS_FDCAN_TX_FIFO_QUEUE_MODE(hfdcan->Init.TxFifoQueueMode)); } if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U) { assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.TxElmtSize)); } #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 if (hfdcan->State == HAL_FDCAN_STATE_RESET) { /* Allocate lock resource and initialize it */ hfdcan->Lock = HAL_UNLOCKED; /* Reset callbacks to legacy functions */ hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* ClockCalibrationCallback */ hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* TxEventFifoCallback */ hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* RxFifo0Callback */ hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* RxFifo1Callback */ hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; /* TxFifoEmptyCallback */ hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* TxBufferCompleteCallback */ hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* TxBufferAbortCallback */ hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; /* RxBufferNewMessageCallback */ hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; /* HighPriorityMessageCallback */ hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; /* TimestampWraparoundCallback */ hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; /* TimeoutOccurredCallback */ hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; /* ErrorCallback */ hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* ErrorStatusCallback */ hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* TT_ScheduleSyncCallback */ hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* TT_TimeMarkCallback */ hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* TT_StopWatchCallback */ hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* TT_GlobalTimeCallback */ if (hfdcan->MspInitCallback == NULL) { hfdcan->MspInitCallback = HAL_FDCAN_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware: CLOCK, NVIC */ hfdcan->MspInitCallback(hfdcan); } #else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { /* Allocate lock resource and initialize it */ hfdcan->Lock = HAL_UNLOCKED; /* Init the low level hardware: CLOCK, NVIC */ HAL_FDCAN_MspInit(hfdcan); } #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /* Exit from Sleep mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Check Sleep mode acknowledge */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Request initialisation */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until the INIT bit into CCCR register is set */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) { /* Check for the Timeout */ if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Enable configuration change */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); /* Set the no automatic retransmission */ if (hfdcan->Init.AutoRetransmission == ENABLE) { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); } else { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR); } /* Set the transmit pause feature */ if (hfdcan->Init.TransmitPause == ENABLE) { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); } else { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP); } /* Set the Protocol Exception Handling */ if (hfdcan->Init.ProtocolException == ENABLE) { CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); } else { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD); } /* Set FDCAN Frame Format */ MODIFY_REG(hfdcan->Instance->CCCR, FDCAN_FRAME_FD_BRS, hfdcan->Init.FrameFormat); /* Reset FDCAN Operation Mode */ CLEAR_BIT(hfdcan->Instance->CCCR, (FDCAN_CCCR_TEST | FDCAN_CCCR_MON | FDCAN_CCCR_ASM)); CLEAR_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); /* Set FDCAN Operating Mode: | Normal | Restricted | Bus | Internal | External | | Operation | Monitoring | LoopBack | LoopBack CCCR.TEST | 0 | 0 | 0 | 1 | 1 CCCR.MON | 0 | 0 | 1 | 1 | 0 TEST.LBCK | 0 | 0 | 0 | 1 | 1 CCCR.ASM | 0 | 1 | 0 | 0 | 0 */ if (hfdcan->Init.Mode == FDCAN_MODE_RESTRICTED_OPERATION) { /* Enable Restricted Operation mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); } else if (hfdcan->Init.Mode != FDCAN_MODE_NORMAL) { if (hfdcan->Init.Mode != FDCAN_MODE_BUS_MONITORING) { /* Enable write access to TEST register */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TEST); /* Enable LoopBack mode */ SET_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK); if (hfdcan->Init.Mode == FDCAN_MODE_INTERNAL_LOOPBACK) { SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); } } else { /* Enable bus monitoring mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON); } } else { /* Nothing to do: normal mode */ } /* Set the nominal bit timing register */ hfdcan->Instance->NBTP = ((((uint32_t)hfdcan->Init.NominalSyncJumpWidth - 1U) << FDCAN_NBTP_NSJW_Pos) | \ (((uint32_t)hfdcan->Init.NominalTimeSeg1 - 1U) << FDCAN_NBTP_NTSEG1_Pos) | \ (((uint32_t)hfdcan->Init.NominalTimeSeg2 - 1U) << FDCAN_NBTP_NTSEG2_Pos) | \ (((uint32_t)hfdcan->Init.NominalPrescaler - 1U) << FDCAN_NBTP_NBRP_Pos)); /* If FD operation with BRS is selected, set the data bit timing register */ if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS) { hfdcan->Instance->DBTP = ((((uint32_t)hfdcan->Init.DataSyncJumpWidth - 1U) << FDCAN_DBTP_DSJW_Pos) | \ (((uint32_t)hfdcan->Init.DataTimeSeg1 - 1U) << FDCAN_DBTP_DTSEG1_Pos) | \ (((uint32_t)hfdcan->Init.DataTimeSeg2 - 1U) << FDCAN_DBTP_DTSEG2_Pos) | \ (((uint32_t)hfdcan->Init.DataPrescaler - 1U) << FDCAN_DBTP_DBRP_Pos)); } if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U) { /* Select between Tx FIFO and Tx Queue operation modes */ SET_BIT(hfdcan->Instance->TXBC, hfdcan->Init.TxFifoQueueMode); } /* Configure Tx element size */ if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U) { MODIFY_REG(hfdcan->Instance->TXESC, FDCAN_TXESC_TBDS, CvtEltSize[hfdcan->Init.TxElmtSize]); } /* Configure Rx FIFO 0 element size */ if (hfdcan->Init.RxFifo0ElmtsNbr > 0U) { MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F0DS, (CvtEltSize[hfdcan->Init.RxFifo0ElmtSize] << FDCAN_RXESC_F0DS_Pos)); } /* Configure Rx FIFO 1 element size */ if (hfdcan->Init.RxFifo1ElmtsNbr > 0U) { MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F1DS, (CvtEltSize[hfdcan->Init.RxFifo1ElmtSize] << FDCAN_RXESC_F1DS_Pos)); } /* Configure Rx buffer element size */ if (hfdcan->Init.RxBuffersNbr > 0U) { MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_RBDS, (CvtEltSize[hfdcan->Init.RxBufferSize] << FDCAN_RXESC_RBDS_Pos)); } /* By default operation mode is set to Event-driven communication. If Time-triggered communication is needed, user should call the HAL_FDCAN_TT_ConfigOperation function just after the HAL_FDCAN_Init */ if (hfdcan->Instance == FDCAN1) { CLEAR_BIT(hfdcan->ttcan->TTOCF, FDCAN_TTOCF_OM); } /* Initialize the Latest Tx FIFO/Queue request buffer index */ hfdcan->LatestTxFifoQRequest = 0U; /* Initialize the error code */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Initialize the FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_READY; /* Calculate each RAM block address */ status = FDCAN_CalcultateRamBlockAddresses(hfdcan); /* Return function status */ return status; } /** * @brief Deinitializes the FDCAN peripheral registers to their default reset values. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DeInit(FDCAN_HandleTypeDef *hfdcan) { /* Check FDCAN handle */ if (hfdcan == NULL) { return HAL_ERROR; } /* Check function parameters */ assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance)); /* Stop the FDCAN module: return value is voluntary ignored */ (void)HAL_FDCAN_Stop(hfdcan); /* Disable Interrupt lines */ CLEAR_BIT(hfdcan->Instance->ILE, (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1)); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 if (hfdcan->MspDeInitCallback == NULL) { hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware: CLOCK, NVIC */ hfdcan->MspDeInitCallback(hfdcan); #else /* DeInit the low level hardware: CLOCK, NVIC */ HAL_FDCAN_MspDeInit(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /* Reset the FDCAN ErrorCode */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_RESET; /* Return function status */ return HAL_OK; } /** * @brief Initializes the FDCAN MSP. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_MspInit could be implemented in the user file */ } /** * @brief DeInitializes the FDCAN MSP. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_MspDeInit could be implemented in the user file */ } /** * @brief Enter FDCAN peripheral in sleep mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnterPowerDownMode(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; /* Request clock stop */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FDCAN is ready for power down */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == 0U) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Return function status */ return HAL_OK; } /** * @brief Exit power down mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ExitPowerDownMode(FDCAN_HandleTypeDef *hfdcan) { uint32_t tickstart; /* Reset clock stop request */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FDCAN exits sleep mode */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Enter normal operation */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Return function status */ return HAL_OK; } #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /** * @brief Register a FDCAN CallBack. * To be used instead of the weak predefined callback * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains * the configuration information for FDCAN module * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID * @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID, void (* pCallback)(FDCAN_HandleTypeDef *_hFDCAN)) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { switch (CallbackID) { case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : hfdcan->TxFifoEmptyCallback = pCallback; break; case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID : hfdcan->RxBufferNewMessageCallback = pCallback; break; case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : hfdcan->HighPriorityMessageCallback = pCallback; break; case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : hfdcan->TimestampWraparoundCallback = pCallback; break; case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : hfdcan->TimeoutOccurredCallback = pCallback; break; case HAL_FDCAN_ERROR_CALLBACK_CB_ID : hfdcan->ErrorCallback = pCallback; break; case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = pCallback; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { switch (CallbackID) { case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = pCallback; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a FDCAN CallBack. * FDCAN callback is redirected to the weak predefined callback * @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains * the configuration information for FDCAN module * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID * @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID * @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID * @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID * @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID * @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID * @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { switch (CallbackID) { case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID : hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; break; case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID : hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; break; case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID : hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; break; case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID : hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; break; case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID : hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; break; case HAL_FDCAN_ERROR_CALLBACK_CB_ID : hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; break; case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = HAL_FDCAN_MspInit; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (hfdcan->State == HAL_FDCAN_STATE_RESET) { switch (CallbackID) { case HAL_FDCAN_MSPINIT_CB_ID : hfdcan->MspInitCallback = HAL_FDCAN_MspInit; break; case HAL_FDCAN_MSPDEINIT_CB_ID : hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; break; default : /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Clock Calibration FDCAN Callback * To be used instead of the weak HAL_FDCAN_ClockCalibrationCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Clock Calibration Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_ClockCalibrationCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ClockCalibrationCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Clock Calibration FDCAN Callback * Clock Calibration FDCAN Callback is redirected to the weak * HAL_FDCAN_ClockCalibrationCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* Legacy weak ClockCalibrationCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Event Fifo FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxEventFifoCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Event Fifo Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxEventFifoCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxEventFifoCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Event Fifo FDCAN Callback * Tx Event Fifo FDCAN Callback is redirected to the weak HAL_FDCAN_TxEventFifoCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Rx Fifo 0 FDCAN Callback * To be used instead of the weak HAL_FDCAN_RxFifo0Callback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Rx Fifo 0 Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_RxFifo0CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo0Callback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Rx Fifo 0 FDCAN Callback * Rx Fifo 0 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo0Callback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Rx Fifo 1 FDCAN Callback * To be used instead of the weak HAL_FDCAN_RxFifo1Callback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Rx Fifo 1 Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_RxFifo1CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo1Callback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Rx Fifo 1 FDCAN Callback * Rx Fifo 1 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo1Callback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Buffer Complete FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Buffer Complete Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxBufferCompleteCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferCompleteCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Buffer Complete FDCAN Callback * Tx Buffer Complete FDCAN Callback is redirected to * the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Tx Buffer Abort FDCAN Callback * To be used instead of the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Tx Buffer Abort Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TxBufferAbortCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferAbortCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Tx Buffer Abort FDCAN Callback * Tx Buffer Abort FDCAN Callback is redirected to * the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register Error Status FDCAN Callback * To be used instead of the weak HAL_FDCAN_ErrorStatusCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the Error Status Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_ErrorStatusCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ErrorStatusCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the Error Status FDCAN Callback * Error Status FDCAN Callback is redirected to the weak HAL_FDCAN_ErrorStatusCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register TT Schedule Synchronization FDCAN Callback * To be used instead of the weak HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the TT Schedule Synchronization Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TT_ScheduleSyncCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_ScheduleSyncCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the TT Schedule Synchronization FDCAN Callback * TT Schedule Synchronization Callback is redirected to the weak * HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* Legacy weak TT_ScheduleSyncCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register TT Time Mark FDCAN Callback * To be used instead of the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the TT Time Mark Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TT_TimeMarkCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_TimeMarkCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the TT Time Mark FDCAN Callback * TT Time Mark Callback is redirected to the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* Legacy weak TT_TimeMarkCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register TT Stop Watch FDCAN Callback * To be used instead of the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the TT Stop Watch Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TT_StopWatchCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_StopWatchCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the TT Stop Watch FDCAN Callback * TT Stop Watch Callback is redirected to the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* Legacy weak TT_StopWatchCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Register TT Global Time FDCAN Callback * To be used instead of the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback * @param hfdcan FDCAN handle * @param pCallback pointer to the TT Global Time Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_RegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, pFDCAN_TT_GlobalTimeCallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_GlobalTimeCallback = pCallback; } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief UnRegister the TT Global Time FDCAN Callback * TT Global Time Callback is redirected to the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback * @param hfdcan FDCAN handle * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan) { HAL_StatusTypeDef status = HAL_OK; if (hfdcan->State == HAL_FDCAN_STATE_READY) { hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* Legacy weak TT_GlobalTimeCallback */ } else { /* Update the error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group2 Configuration functions * @brief FDCAN Configuration functions. * @verbatim ============================================================================== ##### Configuration functions ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_ConfigClockCalibration : Configure the FDCAN clock calibration unit (+) HAL_FDCAN_GetClockCalibrationState : Get the clock calibration state (+) HAL_FDCAN_ResetClockCalibrationState : Reset the clock calibration state (+) HAL_FDCAN_GetClockCalibrationCounter : Get the clock calibration counters values (+) HAL_FDCAN_ConfigFilter : Configure the FDCAN reception filters (+) HAL_FDCAN_ConfigGlobalFilter : Configure the FDCAN global filter (+) HAL_FDCAN_ConfigExtendedIdMask : Configure the extended ID mask (+) HAL_FDCAN_ConfigRxFifoOverwrite : Configure the Rx FIFO operation mode (+) HAL_FDCAN_ConfigFifoWatermark : Configure the FIFO watermark (+) HAL_FDCAN_ConfigRamWatchdog : Configure the RAM watchdog (+) HAL_FDCAN_ConfigTimestampCounter : Configure the timestamp counter (+) HAL_FDCAN_EnableTimestampCounter : Enable the timestamp counter (+) HAL_FDCAN_DisableTimestampCounter : Disable the timestamp counter (+) HAL_FDCAN_GetTimestampCounter : Get the timestamp counter value (+) HAL_FDCAN_ResetTimestampCounter : Reset the timestamp counter to zero (+) HAL_FDCAN_ConfigTimeoutCounter : Configure the timeout counter (+) HAL_FDCAN_EnableTimeoutCounter : Enable the timeout counter (+) HAL_FDCAN_DisableTimeoutCounter : Disable the timeout counter (+) HAL_FDCAN_GetTimeoutCounter : Get the timeout counter value (+) HAL_FDCAN_ResetTimeoutCounter : Reset the timeout counter to its start value (+) HAL_FDCAN_ConfigTxDelayCompensation : Configure the transmitter delay compensation (+) HAL_FDCAN_EnableTxDelayCompensation : Enable the transmitter delay compensation (+) HAL_FDCAN_DisableTxDelayCompensation : Disable the transmitter delay compensation (+) HAL_FDCAN_EnableISOMode : Enable ISO 11898-1 protocol mode (+) HAL_FDCAN_DisableISOMode : Disable ISO 11898-1 protocol mode (+) HAL_FDCAN_EnableEdgeFiltering : Enable edge filtering during bus integration (+) HAL_FDCAN_DisableEdgeFiltering : Disable edge filtering during bus integration @endverbatim * @{ */ /** * @brief Configure the FDCAN clock calibration unit according to the specified * parameters in the FDCAN_ClkCalUnitTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param sCcuConfig pointer to an FDCAN_ClkCalUnitTypeDef structure that * contains the clock calibration information * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigClockCalibration(FDCAN_HandleTypeDef *hfdcan, const FDCAN_ClkCalUnitTypeDef *sCcuConfig) { /* Check function parameters */ assert_param(IS_FDCAN_CLOCK_CALIBRATION(sCcuConfig->ClockCalibration)); if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE) { assert_param(IS_FDCAN_CKDIV(sCcuConfig->ClockDivider)); } else { assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->MinOscClkPeriods, 0xFFU)); assert_param(IS_FDCAN_CALIBRATION_FIELD_LENGTH(sCcuConfig->CalFieldLength)); assert_param(IS_FDCAN_MIN_VALUE(sCcuConfig->TimeQuantaPerBitTime, 4U)); assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->TimeQuantaPerBitTime, 0x25U)); assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->WatchdogStartValue, 0xFFFFU)); } /* FDCAN1 should be initialized in order to use clock calibration */ if (hfdcan->Instance != FDCAN1) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE) { /* Bypass clock calibration */ SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC); /* Configure clock divider */ MODIFY_REG(FDCAN_CCU->CCFG, FDCANCCU_CCFG_CDIV, (sCcuConfig->ClockDivider << FDCANCCU_CCFG_CDIV_Pos)); } else /* sCcuConfig->ClockCalibration == ENABLE */ { /* Clock calibration unit generates time quanta clock */ CLEAR_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC); /* Configure clock calibration unit */ MODIFY_REG(FDCAN_CCU->CCFG, (FDCANCCU_CCFG_TQBT | FDCANCCU_CCFG_CFL | FDCANCCU_CCFG_OCPM), ((sCcuConfig->TimeQuantaPerBitTime << FDCANCCU_CCFG_TQBT_Pos) | sCcuConfig->CalFieldLength | (sCcuConfig->MinOscClkPeriods << FDCANCCU_CCFG_OCPM_Pos))); /* Configure the start value of the calibration watchdog counter */ MODIFY_REG(FDCAN_CCU->CWD, FDCANCCU_CWD_WDC, sCcuConfig->WatchdogStartValue); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the clock calibration state. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval State clock calibration state (can be a value of @arg FDCAN_calibration_state) */ uint32_t HAL_FDCAN_GetClockCalibrationState(const FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_CALS); } /** * @brief Reset the clock calibration state. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ResetClockCalibrationState(FDCAN_HandleTypeDef *hfdcan) { /* FDCAN1 should be initialized in order to use clock calibration */ if (hfdcan->Instance != FDCAN1) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Calibration software reset */ SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_SWR); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the clock calibration counter value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param Counter clock calibration counter. * This parameter can be a value of @arg FDCAN_calibration_counter. * @retval Value clock calibration counter value */ uint32_t HAL_FDCAN_GetClockCalibrationCounter(const FDCAN_HandleTypeDef *hfdcan, uint32_t Counter) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* Check function parameters */ assert_param(IS_FDCAN_CALIBRATION_COUNTER(Counter)); if (Counter == FDCAN_CALIB_TIME_QUANTA_COUNTER) { return ((FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_TQC) >> FDCANCCU_CSTAT_TQC_Pos); } else if (Counter == FDCAN_CALIB_CLOCK_PERIOD_COUNTER) { return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_OCPC); } else /* Counter == FDCAN_CALIB_WATCHDOG_COUNTER */ { return ((FDCAN_CCU->CWD & FDCANCCU_CWD_WDV) >> FDCANCCU_CWD_WDV_Pos); } } /** * @brief Configure the FDCAN reception filter according to the specified * parameters in the FDCAN_FilterTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param sFilterConfig pointer to an FDCAN_FilterTypeDef structure that * contains the filter configuration information * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigFilter(FDCAN_HandleTypeDef *hfdcan, const FDCAN_FilterTypeDef *sFilterConfig) { uint32_t FilterElementW1; uint32_t FilterElementW2; uint32_t *FilterAddress; HAL_FDCAN_StateTypeDef state = hfdcan->State; if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check function parameters */ assert_param(IS_FDCAN_ID_TYPE(sFilterConfig->IdType)); assert_param(IS_FDCAN_FILTER_CFG(sFilterConfig->FilterConfig)); if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) { assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->RxBufferIndex, 63U)); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->IsCalibrationMsg, 1U)); } if (sFilterConfig->IdType == FDCAN_STANDARD_ID) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.StdFiltersNbr - 1U))); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x7FFU)); if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER) { assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x7FFU)); assert_param(IS_FDCAN_STD_FILTER_TYPE(sFilterConfig->FilterType)); } /* Build filter element */ if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) { FilterElementW1 = ((FDCAN_FILTER_TO_RXBUFFER << 27U) | (sFilterConfig->FilterID1 << 16U) | (sFilterConfig->IsCalibrationMsg << 8U) | sFilterConfig->RxBufferIndex); } else { FilterElementW1 = ((sFilterConfig->FilterType << 30U) | (sFilterConfig->FilterConfig << 27U) | (sFilterConfig->FilterID1 << 16U) | sFilterConfig->FilterID2); } /* Calculate filter address */ FilterAddress = (uint32_t *)(hfdcan->msgRam.StandardFilterSA + (sFilterConfig->FilterIndex * 4U)); /* Write filter element to the message RAM */ *FilterAddress = FilterElementW1; } else /* sFilterConfig->IdType == FDCAN_EXTENDED_ID */ { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.ExtFiltersNbr - 1U))); assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x1FFFFFFFU)); if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER) { assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x1FFFFFFFU)); assert_param(IS_FDCAN_EXT_FILTER_TYPE(sFilterConfig->FilterType)); } /* Build first word of filter element */ FilterElementW1 = ((sFilterConfig->FilterConfig << 29U) | sFilterConfig->FilterID1); /* Build second word of filter element */ if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER) { FilterElementW2 = sFilterConfig->RxBufferIndex; } else { FilterElementW2 = ((sFilterConfig->FilterType << 30U) | sFilterConfig->FilterID2); } /* Calculate filter address */ FilterAddress = (uint32_t *)(hfdcan->msgRam.ExtendedFilterSA + (sFilterConfig->FilterIndex * 4U * 2U)); /* Write filter element to the message RAM */ *FilterAddress = FilterElementW1; FilterAddress++; *FilterAddress = FilterElementW2; } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Configure the FDCAN global filter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param NonMatchingStd Defines how received messages with 11-bit IDs that * do not match any element of the filter list are treated. * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. * @param NonMatchingExt Defines how received messages with 29-bit IDs that * do not match any element of the filter list are treated. * This parameter can be a value of @arg FDCAN_Non_Matching_Frames. * @param RejectRemoteStd Filter or reject all the remote 11-bit IDs frames. * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. * @param RejectRemoteExt Filter or reject all the remote 29-bit IDs frames. * This parameter can be a value of @arg FDCAN_Reject_Remote_Frames. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigGlobalFilter(FDCAN_HandleTypeDef *hfdcan, uint32_t NonMatchingStd, uint32_t NonMatchingExt, uint32_t RejectRemoteStd, uint32_t RejectRemoteExt) { /* Check function parameters */ assert_param(IS_FDCAN_NON_MATCHING(NonMatchingStd)); assert_param(IS_FDCAN_NON_MATCHING(NonMatchingExt)); assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteStd)); assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteExt)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure global filter */ hfdcan->Instance->GFC = ((NonMatchingStd << FDCAN_GFC_ANFS_Pos) | (NonMatchingExt << FDCAN_GFC_ANFE_Pos) | (RejectRemoteStd << FDCAN_GFC_RRFS_Pos) | (RejectRemoteExt << FDCAN_GFC_RRFE_Pos)); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the extended ID mask. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param Mask Extended ID Mask. * This parameter must be a number between 0 and 0x1FFFFFFF. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigExtendedIdMask(FDCAN_HandleTypeDef *hfdcan, uint32_t Mask) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(Mask, 0x1FFFFFFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure the extended ID mask */ hfdcan->Instance->XIDAM = Mask; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the Rx FIFO operation mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo Rx FIFO. * This parameter can be one of the following values: * @arg FDCAN_RX_FIFO0: Rx FIFO 0 * @arg FDCAN_RX_FIFO1: Rx FIFO 1 * @param OperationMode operation mode. * This parameter can be a value of @arg FDCAN_Rx_FIFO_operation_mode. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigRxFifoOverwrite(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo, uint32_t OperationMode) { /* Check function parameters */ assert_param(IS_FDCAN_RX_FIFO(RxFifo)); assert_param(IS_FDCAN_RX_FIFO_MODE(OperationMode)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { if (RxFifo == FDCAN_RX_FIFO0) { /* Select FIFO 0 Operation Mode */ MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0OM, (OperationMode << FDCAN_RXF0C_F0OM_Pos)); } else /* RxFifo == FDCAN_RX_FIFO1 */ { /* Select FIFO 1 Operation Mode */ MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1OM, (OperationMode << FDCAN_RXF1C_F1OM_Pos)); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the FIFO watermark. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param FIFO select the FIFO to be configured. * This parameter can be a value of @arg FDCAN_FIFO_watermark. * @param Watermark level for FIFO watermark interrupt. * This parameter must be a number between: * - 0 and 32, if FIFO is FDCAN_CFG_TX_EVENT_FIFO * - 0 and 64, if FIFO is FDCAN_CFG_RX_FIFO0 or FDCAN_CFG_RX_FIFO1 * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigFifoWatermark(FDCAN_HandleTypeDef *hfdcan, uint32_t FIFO, uint32_t Watermark) { /* Check function parameters */ assert_param(IS_FDCAN_FIFO_WATERMARK(FIFO)); if (FIFO == FDCAN_CFG_TX_EVENT_FIFO) { assert_param(IS_FDCAN_MAX_VALUE(Watermark, 32U)); } else /* (FIFO == FDCAN_CFG_RX_FIFO0) || (FIFO == FDCAN_CFG_RX_FIFO1) */ { assert_param(IS_FDCAN_MAX_VALUE(Watermark, 64U)); } if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Set the level for FIFO watermark interrupt */ if (FIFO == FDCAN_CFG_TX_EVENT_FIFO) { MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFWM, (Watermark << FDCAN_TXEFC_EFWM_Pos)); } else if (FIFO == FDCAN_CFG_RX_FIFO0) { MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0WM, (Watermark << FDCAN_RXF0C_F0WM_Pos)); } else /* FIFO == FDCAN_CFG_RX_FIFO1 */ { MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1WM, (Watermark << FDCAN_RXF1C_F1WM_Pos)); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the RAM watchdog. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param CounterStartValue Start value of the Message RAM Watchdog Counter, * This parameter must be a number between 0x00 and 0xFF, * with the reset value of 0x00 the counter is disabled. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigRamWatchdog(FDCAN_HandleTypeDef *hfdcan, uint32_t CounterStartValue) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(CounterStartValue, 0xFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure the RAM watchdog counter start value */ MODIFY_REG(hfdcan->Instance->RWD, FDCAN_RWD_WDC, CounterStartValue); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimestampPrescaler Timestamp Counter Prescaler. * This parameter can be a value of @arg FDCAN_Timestamp_Prescaler. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampPrescaler) { /* Check function parameters */ assert_param(IS_FDCAN_TIMESTAMP_PRESCALER(TimestampPrescaler)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure prescaler */ MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TCP, TimestampPrescaler); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimestampOperation Timestamp counter operation. * This parameter can be a value of @arg FDCAN_Timestamp. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampOperation) { /* Check function parameters */ assert_param(IS_FDCAN_TIMESTAMP(TimestampOperation)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable timestamp counter */ MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS, TimestampOperation); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the timestamp counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTimestampCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable timestamp counter */ CLEAR_BIT(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the timestamp counter value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Timestamp counter value */ uint16_t HAL_FDCAN_GetTimestampCounter(const FDCAN_HandleTypeDef *hfdcan) { return (uint16_t)(hfdcan->Instance->TSCV); } /** * @brief Reset the timestamp counter to zero. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ResetTimestampCounter(FDCAN_HandleTypeDef *hfdcan) { if ((hfdcan->Instance->TSCC & FDCAN_TSCC_TSS) != FDCAN_TIMESTAMP_EXTERNAL) { /* Reset timestamp counter. Actually any write operation to TSCV clears the counter */ CLEAR_REG(hfdcan->Instance->TSCV); } else { /* Update error code. Unable to reset external counter */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } /* Return function status */ return HAL_OK; } /** * @brief Configure the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimeoutOperation Timeout counter operation. * This parameter can be a value of @arg FDCAN_Timeout_Operation. * @param TimeoutPeriod Start value of the timeout down-counter. * This parameter must be a number between 0x0000 and 0xFFFF * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTimeoutCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeoutOperation, uint32_t TimeoutPeriod) { /* Check function parameters */ assert_param(IS_FDCAN_TIMEOUT(TimeoutOperation)); assert_param(IS_FDCAN_MAX_VALUE(TimeoutPeriod, 0xFFFFU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Select timeout operation and configure period */ MODIFY_REG(hfdcan->Instance->TOCC, (FDCAN_TOCC_TOS | FDCAN_TOCC_TOP), (TimeoutOperation | (TimeoutPeriod << FDCAN_TOCC_TOP_Pos))); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable timeout counter */ SET_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the timeout counter. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable timeout counter */ CLEAR_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Get the timeout counter value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Timeout counter value */ uint16_t HAL_FDCAN_GetTimeoutCounter(const FDCAN_HandleTypeDef *hfdcan) { return (uint16_t)(hfdcan->Instance->TOCV); } /** * @brief Reset the timeout counter to its start value. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ResetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan) { if ((hfdcan->Instance->TOCC & FDCAN_TOCC_TOS) == FDCAN_TIMEOUT_CONTINUOUS) { /* Reset timeout counter to start value */ CLEAR_REG(hfdcan->Instance->TOCV); /* Return function status */ return HAL_OK; } else { /* Update error code. Unable to reset counter: controlled only by FIFO empty state */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } /** * @brief Configure the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TdcOffset Transmitter Delay Compensation Offset. * This parameter must be a number between 0x00 and 0x7F. * @param TdcFilter Transmitter Delay Compensation Filter Window Length. * This parameter must be a number between 0x00 and 0x7F. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan, uint32_t TdcOffset, uint32_t TdcFilter) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(TdcOffset, 0x7FU)); assert_param(IS_FDCAN_MAX_VALUE(TdcFilter, 0x7FU)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure TDC offset and filter window */ hfdcan->Instance->TDCR = ((TdcFilter << FDCAN_TDCR_TDCF_Pos) | (TdcOffset << FDCAN_TDCR_TDCO_Pos)); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable transmitter delay compensation */ SET_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable the transmitter delay compensation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable transmitter delay compensation */ CLEAR_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable ISO 11898-1 protocol mode. * CAN FD frame format is according to ISO 11898-1 standard. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableISOMode(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable Non ISO protocol mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable ISO 11898-1 protocol mode. * CAN FD frame format is according to Bosch CAN FD specification V1.0. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableISOMode(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable Non ISO protocol mode */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Enable edge filtering during bus integration. * Two consecutive dominant tq are required to detect an edge for hard synchronization. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Enable edge filtering */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Disable edge filtering during bus integration. * One dominant tq is required to detect an edge for hard synchronization. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DisableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Disable edge filtering */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group3 Control functions * @brief Control functions * @verbatim ============================================================================== ##### Control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_Start : Start the FDCAN module (+) HAL_FDCAN_Stop : Stop the FDCAN module and enable access to configuration registers (+) HAL_FDCAN_AddMessageToTxFifoQ : Add a message to the Tx FIFO/Queue and activate the corresponding transmission request (+) HAL_FDCAN_AddMessageToTxBuffer : Add a message to a dedicated Tx buffer (+) HAL_FDCAN_EnableTxBufferRequest : Enable transmission request (+) HAL_FDCAN_GetLatestTxFifoQRequestBuffer : Get Tx buffer index of latest Tx FIFO/Queue request (+) HAL_FDCAN_AbortTxRequest : Abort transmission request (+) HAL_FDCAN_GetRxMessage : Get an FDCAN frame from the Rx Buffer/FIFO zone into the message RAM (+) HAL_FDCAN_GetTxEvent : Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM (+) HAL_FDCAN_GetHighPriorityMessageStatus : Get high priority message status (+) HAL_FDCAN_GetProtocolStatus : Get protocol status (+) HAL_FDCAN_GetErrorCounters : Get error counter values (+) HAL_FDCAN_IsRxBufferMessageAvailable : Check if a new message is received in the selected Rx buffer (+) HAL_FDCAN_IsTxBufferMessagePending : Check if a transmission request is pending on the selected Tx buffer (+) HAL_FDCAN_GetRxFifoFillLevel : Return Rx FIFO fill level (+) HAL_FDCAN_GetTxFifoFreeLevel : Return Tx FIFO free level (+) HAL_FDCAN_IsRestrictedOperationMode : Check if the FDCAN peripheral entered Restricted Operation Mode (+) HAL_FDCAN_ExitRestrictedOperationMode : Exit Restricted Operation Mode @endverbatim * @{ */ /** * @brief Start the FDCAN module. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Start(FDCAN_HandleTypeDef *hfdcan) { if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Change FDCAN peripheral state */ hfdcan->State = HAL_FDCAN_STATE_BUSY; /* Request leave initialisation */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Reset the FDCAN ErrorCode */ hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Stop the FDCAN module and enable access to configuration registers. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_Stop(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Request initialisation */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT); /* Wait until the INIT bit into CCCR register is set */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Reset counter */ Counter = 0U; /* Exit from Sleep mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR); /* Wait until FDCAN exits sleep mode */ while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable configuration change */ SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE); /* Reset Latest Tx FIFO/Queue Request Buffer Index */ hfdcan->LatestTxFifoQRequest = 0U; /* Change FDCAN peripheral state */ hfdcan->State = HAL_FDCAN_STATE_READY; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Add a message to the Tx FIFO/Queue and activate the corresponding transmission request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. * @param pTxData pointer to a buffer containing the payload of the Tx frame. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxFifoQ(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, const uint8_t *pTxData) { uint32_t PutIndex; /* Check function parameters */ assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType)); if (pTxHeader->IdType == FDCAN_STANDARD_ID) { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU)); } else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU)); } assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType)); assert_param(IS_FDCAN_DLC(pTxHeader->DataLength)); assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator)); assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch)); assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat)); assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl)); assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU)); if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Check that the Tx FIFO/Queue has an allocated area into the RAM */ if ((hfdcan->Instance->TXBC & FDCAN_TXBC_TFQS) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } /* Check that the Tx FIFO/Queue is not full */ if ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQF) != 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_FULL; return HAL_ERROR; } else { /* Retrieve the Tx FIFO PutIndex */ PutIndex = ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos); /* Add the message to the Tx FIFO/Queue */ FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, PutIndex); /* Activate the corresponding transmission request */ hfdcan->Instance->TXBAR = ((uint32_t)1 << PutIndex); /* Store the Latest Tx FIFO/Queue Request Buffer Index */ hfdcan->LatestTxFifoQRequest = ((uint32_t)1 << PutIndex); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Add a message to a dedicated Tx buffer * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. * @param pTxData pointer to a buffer containing the payload of the Tx frame. * @param BufferIndex index of the buffer to be configured. * This parameter can be a value of @arg FDCAN_Tx_location. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxBuffer(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, const uint8_t *pTxData, uint32_t BufferIndex) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType)); if (pTxHeader->IdType == FDCAN_STANDARD_ID) { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU)); } else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ { assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU)); } assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType)); assert_param(IS_FDCAN_DLC(pTxHeader->DataLength)); assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator)); assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch)); assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat)); assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl)); assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU)); assert_param(IS_FDCAN_TX_LOCATION(BufferIndex)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that the selected buffer has an allocated area into the RAM */ if (POSITION_VAL(BufferIndex) >= ((hfdcan->Instance->TXBC & FDCAN_TXBC_NDTB) >> FDCAN_TXBC_NDTB_Pos)) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } /* Check that there is no transmission request pending for the selected buffer */ if ((hfdcan->Instance->TXBRP & BufferIndex) != 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; return HAL_ERROR; } else { /* Add the message to the Tx buffer */ FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, POSITION_VAL(BufferIndex)); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable transmission request. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndex buffer index. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_EnableTxBufferRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex) { if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Add transmission request */ hfdcan->Instance->TXBAR = BufferIndex; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get Tx buffer index of latest Tx FIFO/Queue request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Tx buffer index of last Tx FIFO/Queue request * - Any value of @arg FDCAN_Tx_location if Tx request has been submitted. * - 0 if no Tx FIFO/Queue request have been submitted. */ uint32_t HAL_FDCAN_GetLatestTxFifoQRequestBuffer(const FDCAN_HandleTypeDef *hfdcan) { /* Return Last Tx FIFO/Queue Request Buffer */ return hfdcan->LatestTxFifoQRequest; } /** * @brief Abort transmission request * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndex buffer index. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_AbortTxRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex) { if (hfdcan->State == HAL_FDCAN_STATE_BUSY) { /* Add cancellation request */ hfdcan->Instance->TXBCR = BufferIndex; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get an FDCAN frame from the Rx Buffer/FIFO zone into the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxLocation Location of the received message to be read. * This parameter can be a value of @arg FDCAN_Rx_location. * @param pRxHeader pointer to a FDCAN_RxHeaderTypeDef structure. * @param pRxData pointer to a buffer where the payload of the Rx frame will be stored. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetRxMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t RxLocation, FDCAN_RxHeaderTypeDef *pRxHeader, uint8_t *pRxData) { uint32_t *RxAddress; uint8_t *pData; uint32_t ByteCounter; uint32_t GetIndex = 0; HAL_FDCAN_StateTypeDef state = hfdcan->State; if (state == HAL_FDCAN_STATE_BUSY) { if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ { /* Check that the Rx FIFO 0 has an allocated area into the RAM */ if ((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0S) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } /* Check that the Rx FIFO 0 is not empty */ if ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } else { /* Check that the Rx FIFO 0 is full & overwrite mode is on */ if (((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0F) >> FDCAN_RXF0S_F0F_Pos) == 1U) { if (((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0OM) >> FDCAN_RXF0C_F0OM_Pos) == FDCAN_RX_FIFO_OVERWRITE) { /* When overwrite status is on discard first message in FIFO */ GetIndex = 1U; } } /* Calculate Rx FIFO 0 element index */ GetIndex += ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos); /* Calculate Rx FIFO 0 element address */ RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO0SA + (GetIndex * hfdcan->Init.RxFifo0ElmtSize * 4U)); } } else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */ { /* Check that the Rx FIFO 1 has an allocated area into the RAM */ if ((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1S) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } /* Check that the Rx FIFO 1 is not empty */ if ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } else { /* Check that the Rx FIFO 1 is full & overwrite mode is on */ if (((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1F) >> FDCAN_RXF1S_F1F_Pos) == 1U) { if (((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1OM) >> FDCAN_RXF1C_F1OM_Pos) == FDCAN_RX_FIFO_OVERWRITE) { /* When overwrite status is on discard first message in FIFO */ GetIndex = 1U; } } /* Calculate Rx FIFO 1 element index */ GetIndex += ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos); /* Calculate Rx FIFO 1 element address */ RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO1SA + (GetIndex * hfdcan->Init.RxFifo1ElmtSize * 4U)); } } else /* Rx element is assigned to a dedicated Rx buffer */ { /* Check that the selected buffer has an allocated area into the RAM */ if (RxLocation >= hfdcan->Init.RxBuffersNbr) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } else { /* Calculate Rx buffer address */ RxAddress = (uint32_t *)(hfdcan->msgRam.RxBufferSA + (RxLocation * hfdcan->Init.RxBufferSize * 4U)); } } /* Retrieve IdType */ pRxHeader->IdType = *RxAddress & FDCAN_ELEMENT_MASK_XTD; /* Retrieve Identifier */ if (pRxHeader->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ { pRxHeader->Identifier = ((*RxAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); } else /* Extended ID element */ { pRxHeader->Identifier = (*RxAddress & FDCAN_ELEMENT_MASK_EXTID); } /* Retrieve RxFrameType */ pRxHeader->RxFrameType = (*RxAddress & FDCAN_ELEMENT_MASK_RTR); /* Retrieve ErrorStateIndicator */ pRxHeader->ErrorStateIndicator = (*RxAddress & FDCAN_ELEMENT_MASK_ESI); /* Increment RxAddress pointer to second word of Rx FIFO element */ RxAddress++; /* Retrieve RxTimestamp */ pRxHeader->RxTimestamp = (*RxAddress & FDCAN_ELEMENT_MASK_TS); /* Retrieve DataLength */ pRxHeader->DataLength = ((*RxAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U); /* Retrieve BitRateSwitch */ pRxHeader->BitRateSwitch = (*RxAddress & FDCAN_ELEMENT_MASK_BRS); /* Retrieve FDFormat */ pRxHeader->FDFormat = (*RxAddress & FDCAN_ELEMENT_MASK_FDF); /* Retrieve FilterIndex */ pRxHeader->FilterIndex = ((*RxAddress & FDCAN_ELEMENT_MASK_FIDX) >> 24U); /* Retrieve NonMatchingFrame */ pRxHeader->IsFilterMatchingFrame = ((*RxAddress & FDCAN_ELEMENT_MASK_ANMF) >> 31U); /* Increment RxAddress pointer to payload of Rx FIFO element */ RxAddress++; /* Retrieve Rx payload */ pData = (uint8_t *)RxAddress; for (ByteCounter = 0; ByteCounter < DLCtoBytes[pRxHeader->DataLength]; ByteCounter++) { pRxData[ByteCounter] = pData[ByteCounter]; } if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */ { /* Acknowledge the Rx FIFO 0 that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->RXF0A = GetIndex; } else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */ { /* Acknowledge the Rx FIFO 1 that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->RXF1A = GetIndex; } else /* Rx element is assigned to a dedicated Rx buffer */ { /* Clear the New Data flag of the current Rx buffer */ if (RxLocation < FDCAN_RX_BUFFER32) { hfdcan->Instance->NDAT1 = ((uint32_t)1U << RxLocation); } else /* FDCAN_RX_BUFFER32 <= RxLocation <= FDCAN_RX_BUFFER63 */ { hfdcan->Instance->NDAT2 = ((uint32_t)1U << (RxLocation & 0x1FU)); } } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxEvent pointer to a FDCAN_TxEventFifoTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetTxEvent(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxEventFifoTypeDef *pTxEvent) { uint32_t *TxEventAddress; uint32_t GetIndex; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_MIN_VALUE(hfdcan->Init.TxEventsNbr, 1U)); if (state == HAL_FDCAN_STATE_BUSY) { /* Check that the Tx Event FIFO has an allocated area into the RAM */ if ((hfdcan->Instance->TXEFC & FDCAN_TXEFC_EFS) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } /* Check that the Tx event FIFO is not empty */ if ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFFL) == 0U) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY; return HAL_ERROR; } /* Calculate Tx event FIFO element address */ GetIndex = ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFGI) >> FDCAN_TXEFS_EFGI_Pos); TxEventAddress = (uint32_t *)(hfdcan->msgRam.TxEventFIFOSA + (GetIndex * 2U * 4U)); /* Retrieve IdType */ pTxEvent->IdType = *TxEventAddress & FDCAN_ELEMENT_MASK_XTD; /* Retrieve Identifier */ if (pTxEvent->IdType == FDCAN_STANDARD_ID) /* Standard ID element */ { pTxEvent->Identifier = ((*TxEventAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U); } else /* Extended ID element */ { pTxEvent->Identifier = (*TxEventAddress & FDCAN_ELEMENT_MASK_EXTID); } /* Retrieve TxFrameType */ pTxEvent->TxFrameType = (*TxEventAddress & FDCAN_ELEMENT_MASK_RTR); /* Retrieve ErrorStateIndicator */ pTxEvent->ErrorStateIndicator = (*TxEventAddress & FDCAN_ELEMENT_MASK_ESI); /* Increment TxEventAddress pointer to second word of Tx Event FIFO element */ TxEventAddress++; /* Retrieve TxTimestamp */ pTxEvent->TxTimestamp = (*TxEventAddress & FDCAN_ELEMENT_MASK_TS); /* Retrieve DataLength */ pTxEvent->DataLength = ((*TxEventAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U); /* Retrieve BitRateSwitch */ pTxEvent->BitRateSwitch = (*TxEventAddress & FDCAN_ELEMENT_MASK_BRS); /* Retrieve FDFormat */ pTxEvent->FDFormat = (*TxEventAddress & FDCAN_ELEMENT_MASK_FDF); /* Retrieve EventType */ pTxEvent->EventType = (*TxEventAddress & FDCAN_ELEMENT_MASK_ET); /* Retrieve MessageMarker */ pTxEvent->MessageMarker = ((*TxEventAddress & FDCAN_ELEMENT_MASK_MM) >> 24U); /* Acknowledge the Tx Event FIFO that the oldest element is read so that it increments the GetIndex */ hfdcan->Instance->TXEFA = GetIndex; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED; return HAL_ERROR; } } /** * @brief Get high priority message status. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param HpMsgStatus pointer to an FDCAN_HpMsgStatusTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetHighPriorityMessageStatus(const FDCAN_HandleTypeDef *hfdcan, FDCAN_HpMsgStatusTypeDef *HpMsgStatus) { HpMsgStatus->FilterList = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FLST) >> FDCAN_HPMS_FLST_Pos); HpMsgStatus->FilterIndex = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FIDX) >> FDCAN_HPMS_FIDX_Pos); HpMsgStatus->MessageStorage = (hfdcan->Instance->HPMS & FDCAN_HPMS_MSI); HpMsgStatus->MessageIndex = (hfdcan->Instance->HPMS & FDCAN_HPMS_BIDX); /* Return function status */ return HAL_OK; } /** * @brief Get protocol status. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ProtocolStatus pointer to an FDCAN_ProtocolStatusTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetProtocolStatus(const FDCAN_HandleTypeDef *hfdcan, FDCAN_ProtocolStatusTypeDef *ProtocolStatus) { uint32_t StatusReg; /* Read the protocol status register */ StatusReg = READ_REG(hfdcan->Instance->PSR); /* Fill the protocol status structure */ ProtocolStatus->LastErrorCode = (StatusReg & FDCAN_PSR_LEC); ProtocolStatus->DataLastErrorCode = ((StatusReg & FDCAN_PSR_DLEC) >> FDCAN_PSR_DLEC_Pos); ProtocolStatus->Activity = (StatusReg & FDCAN_PSR_ACT); ProtocolStatus->ErrorPassive = ((StatusReg & FDCAN_PSR_EP) >> FDCAN_PSR_EP_Pos); ProtocolStatus->Warning = ((StatusReg & FDCAN_PSR_EW) >> FDCAN_PSR_EW_Pos); ProtocolStatus->BusOff = ((StatusReg & FDCAN_PSR_BO) >> FDCAN_PSR_BO_Pos); ProtocolStatus->RxESIflag = ((StatusReg & FDCAN_PSR_RESI) >> FDCAN_PSR_RESI_Pos); ProtocolStatus->RxBRSflag = ((StatusReg & FDCAN_PSR_RBRS) >> FDCAN_PSR_RBRS_Pos); ProtocolStatus->RxFDFflag = ((StatusReg & FDCAN_PSR_REDL) >> FDCAN_PSR_REDL_Pos); ProtocolStatus->ProtocolException = ((StatusReg & FDCAN_PSR_PXE) >> FDCAN_PSR_PXE_Pos); ProtocolStatus->TDCvalue = ((StatusReg & FDCAN_PSR_TDCV) >> FDCAN_PSR_TDCV_Pos); /* Return function status */ return HAL_OK; } /** * @brief Get error counter values. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ErrorCounters pointer to an FDCAN_ErrorCountersTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_GetErrorCounters(const FDCAN_HandleTypeDef *hfdcan, FDCAN_ErrorCountersTypeDef *ErrorCounters) { uint32_t CountersReg; /* Read the error counters register */ CountersReg = READ_REG(hfdcan->Instance->ECR); /* Fill the error counters structure */ ErrorCounters->TxErrorCnt = ((CountersReg & FDCAN_ECR_TEC) >> FDCAN_ECR_TEC_Pos); ErrorCounters->RxErrorCnt = ((CountersReg & FDCAN_ECR_REC) >> FDCAN_ECR_REC_Pos); ErrorCounters->RxErrorPassive = ((CountersReg & FDCAN_ECR_RP) >> FDCAN_ECR_RP_Pos); ErrorCounters->ErrorLogging = ((CountersReg & FDCAN_ECR_CEL) >> FDCAN_ECR_CEL_Pos); /* Return function status */ return HAL_OK; } /** * @brief Check if a new message is received in the selected Rx buffer. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxBufferIndex Rx buffer index. * This parameter must be a number between 0 and 63. * @retval Status * - 0 : No new message on RxBufferIndex. * - 1 : New message received on RxBufferIndex. */ uint32_t HAL_FDCAN_IsRxBufferMessageAvailable(FDCAN_HandleTypeDef *hfdcan, uint32_t RxBufferIndex) { /* Check function parameters */ assert_param(IS_FDCAN_MAX_VALUE(RxBufferIndex, 63U)); uint32_t NewData1 = hfdcan->Instance->NDAT1; uint32_t NewData2 = hfdcan->Instance->NDAT2; /* Check new message reception on the selected buffer */ if (((RxBufferIndex < 32U) && ((NewData1 & (uint32_t)((uint32_t)1 << RxBufferIndex)) == 0U)) || ((RxBufferIndex >= 32U) && ((NewData2 & (uint32_t)((uint32_t)1 << (RxBufferIndex & 0x1FU))) == 0U))) { return 0; } /* Clear the New Data flag of the current Rx buffer */ if (RxBufferIndex < 32U) { hfdcan->Instance->NDAT1 = ((uint32_t)1 << RxBufferIndex); } else /* 32 <= RxBufferIndex <= 63 */ { hfdcan->Instance->NDAT2 = ((uint32_t)1 << (RxBufferIndex & 0x1FU)); } return 1; } /** * @brief Check if a transmission request is pending on the selected Tx buffer. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TxBufferIndex Tx buffer index. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval Status * - 0 : No pending transmission request on TxBufferIndex. * - 1 : Pending transmission request on TxBufferIndex. */ uint32_t HAL_FDCAN_IsTxBufferMessagePending(const FDCAN_HandleTypeDef *hfdcan, uint32_t TxBufferIndex) { /* Check pending transmission request on the selected buffer */ if ((hfdcan->Instance->TXBRP & TxBufferIndex) == 0U) { return 0; } return 1; } /** * @brief Return Rx FIFO fill level. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo Rx FIFO. * This parameter can be one of the following values: * @arg FDCAN_RX_FIFO0: Rx FIFO 0 * @arg FDCAN_RX_FIFO1: Rx FIFO 1 * @retval Rx FIFO fill level. */ uint32_t HAL_FDCAN_GetRxFifoFillLevel(const FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo) { uint32_t FillLevel; /* Check function parameters */ assert_param(IS_FDCAN_RX_FIFO(RxFifo)); if (RxFifo == FDCAN_RX_FIFO0) { FillLevel = hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL; } else /* RxFifo == FDCAN_RX_FIFO1 */ { FillLevel = hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL; } /* Return Rx FIFO fill level */ return FillLevel; } /** * @brief Return Tx FIFO free level: number of consecutive free Tx FIFO * elements starting from Tx FIFO GetIndex. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Tx FIFO free level. */ uint32_t HAL_FDCAN_GetTxFifoFreeLevel(const FDCAN_HandleTypeDef *hfdcan) { uint32_t FreeLevel; FreeLevel = hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFFL; /* Return Tx FIFO free level */ return FreeLevel; } /** * @brief Check if the FDCAN peripheral entered Restricted Operation Mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval Status * - 0 : Normal FDCAN operation. * - 1 : Restricted Operation Mode active. */ uint32_t HAL_FDCAN_IsRestrictedOperationMode(const FDCAN_HandleTypeDef *hfdcan) { uint32_t OperationMode; /* Get Operation Mode */ OperationMode = ((hfdcan->Instance->CCCR & FDCAN_CCCR_ASM) >> FDCAN_CCCR_ASM_Pos); return OperationMode; } /** * @brief Exit Restricted Operation Mode. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ExitRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan) { HAL_FDCAN_StateTypeDef state = hfdcan->State; if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Exit Restricted Operation mode */ CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group4 TT Configuration and control functions * @brief TT Configuration and control functions * @verbatim ============================================================================== ##### TT Configuration and control functions ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_TT_ConfigOperation : Initialize TT operation parameters (+) HAL_FDCAN_TT_ConfigReferenceMessage : Configure the reference message (+) HAL_FDCAN_TT_ConfigTrigger : Configure the FDCAN trigger (+) HAL_FDCAN_TT_SetGlobalTime : Schedule global time adjustment (+) HAL_FDCAN_TT_SetClockSynchronization : Schedule TUR numerator update (+) HAL_FDCAN_TT_ConfigStopWatch : Configure stop watch source and polarity (+) HAL_FDCAN_TT_ConfigRegisterTimeMark : Configure register time mark pulse generation (+) HAL_FDCAN_TT_EnableRegisterTimeMarkPulse : Enable register time mark pulse generation (+) HAL_FDCAN_TT_DisableRegisterTimeMarkPulse : Disable register time mark pulse generation (+) HAL_FDCAN_TT_EnableTriggerTimeMarkPulse : Enable trigger time mark pulse generation (+) HAL_FDCAN_TT_DisableTriggerTimeMarkPulse : Disable trigger time mark pulse generation (+) HAL_FDCAN_TT_EnableHardwareGapControl : Enable gap control by input pin fdcan1_evt (+) HAL_FDCAN_TT_DisableHardwareGapControl : Disable gap control by input pin fdcan1_evt (+) HAL_FDCAN_TT_EnableTimeMarkGapControl : Enable gap control (finish only) by register time mark IT (+) HAL_FDCAN_TT_DisableTimeMarkGapControl : Disable gap control by register time mark interrupt (+) HAL_FDCAN_TT_SetNextIsGap : Transmit next reference message with Next_is_Gap = "1" (+) HAL_FDCAN_TT_SetEndOfGap : Finish a Gap by requesting start of reference message (+) HAL_FDCAN_TT_ConfigExternalSyncPhase : Configure target phase used for external synchronization (+) HAL_FDCAN_TT_EnableExternalSynchronization : Synchronize the phase of the FDCAN schedule to an external schedule (+) HAL_FDCAN_TT_DisableExternalSynchronization : Disable external schedule synchronization (+) HAL_FDCAN_TT_GetOperationStatus : Get TT operation status @endverbatim * @{ */ /** * @brief Initialize TT operation parameters. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTTParams pointer to a FDCAN_TT_ConfigTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigOperation(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TT_ConfigTypeDef *pTTParams) { uint32_t tickstart; uint32_t RAMcounter; uint32_t StartAddress; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_TUR_NUMERATOR(pTTParams->TURNumerator)); assert_param(IS_FDCAN_TT_TUR_DENOMINATOR(pTTParams->TURDenominator)); assert_param(IS_FDCAN_TT_TIME_MASTER(pTTParams->TimeMaster)); assert_param(IS_FDCAN_MAX_VALUE(pTTParams->SyncDevLimit, 7U)); assert_param(IS_FDCAN_MAX_VALUE(pTTParams->InitRefTrigOffset, 127U)); assert_param(IS_FDCAN_MAX_VALUE(pTTParams->TriggerMemoryNbr, 64U)); assert_param(IS_FDCAN_TT_CYCLE_START_SYNC(pTTParams->CycleStartSync)); assert_param(IS_FDCAN_TT_STOP_WATCH_TRIGGER(pTTParams->StopWatchTrigSel)); assert_param(IS_FDCAN_TT_EVENT_TRIGGER(pTTParams->EventTrigSel)); if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER) { assert_param(IS_FDCAN_TT_BASIC_CYCLES_NUMBER(pTTParams->BasicCyclesNbr)); } if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) { assert_param(IS_FDCAN_TT_OPERATION(pTTParams->GapEnable)); assert_param(IS_FDCAN_MAX_VALUE(pTTParams->AppWdgLimit, 255U)); assert_param(IS_FDCAN_TT_EVENT_TRIGGER_POLARITY(pTTParams->EvtTrigPolarity)); assert_param(IS_FDCAN_TT_TX_ENABLE_WINDOW(pTTParams->TxEnableWindow)); assert_param(IS_FDCAN_MAX_VALUE(pTTParams->ExpTxTrigNbr, 4095U)); } if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1) { assert_param(IS_FDCAN_TT_TUR_LEVEL_0_2(pTTParams->TURNumerator, pTTParams->TURDenominator)); assert_param(IS_FDCAN_TT_EXTERNAL_CLK_SYNC(pTTParams->ExternalClkSync)); assert_param(IS_FDCAN_TT_GLOBAL_TIME_FILTERING(pTTParams->GlobalTimeFilter)); assert_param(IS_FDCAN_TT_AUTO_CLK_CALIBRATION(pTTParams->ClockCalibration)); } else { assert_param(IS_FDCAN_TT_TUR_LEVEL_1(pTTParams->TURNumerator, pTTParams->TURDenominator)); } if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Stop local time in order to enable write access to the other bits of TURCF register */ CLEAR_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until the ELT bit into TURCF register is reset */ while ((hfdcan->ttcan->TURCF & FDCAN_TURCF_ELT) != 0U) { /* Check for the Timeout */ if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } } /* Configure TUR (Time Unit Ratio) */ MODIFY_REG(hfdcan->ttcan->TURCF, (FDCAN_TURCF_NCL | FDCAN_TURCF_DC), (((pTTParams->TURNumerator - 0x10000U) << FDCAN_TURCF_NCL_Pos) | (pTTParams->TURDenominator << FDCAN_TURCF_DC_Pos))); /* Enable local time */ SET_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT); /* Configure TT operation */ MODIFY_REG(hfdcan->ttcan->TTOCF, (FDCAN_TTOCF_OM | FDCAN_TTOCF_TM | FDCAN_TTOCF_LDSDL | FDCAN_TTOCF_IRTO), (pTTParams->OperationMode | \ pTTParams->TimeMaster | \ (pTTParams->SyncDevLimit << FDCAN_TTOCF_LDSDL_Pos) | \ (pTTParams->InitRefTrigOffset << FDCAN_TTOCF_IRTO_Pos))); if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) { MODIFY_REG(hfdcan->ttcan->TTOCF, (FDCAN_TTOCF_GEN | FDCAN_TTOCF_AWL | FDCAN_TTOCF_EVTP), (pTTParams->GapEnable | \ (pTTParams->AppWdgLimit << FDCAN_TTOCF_AWL_Pos) | \ pTTParams->EvtTrigPolarity)); } if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1) { MODIFY_REG(hfdcan->ttcan->TTOCF, (FDCAN_TTOCF_EECS | FDCAN_TTOCF_EGTF | FDCAN_TTOCF_ECC), (pTTParams->ExternalClkSync | \ pTTParams->GlobalTimeFilter | \ pTTParams->ClockCalibration)); } /* Configure system matrix limits */ MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CSS, pTTParams->CycleStartSync); if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0) { MODIFY_REG(hfdcan->ttcan->TTMLM, (FDCAN_TTMLM_TXEW | FDCAN_TTMLM_ENTT), (((pTTParams->TxEnableWindow - 1U) << FDCAN_TTMLM_TXEW_Pos) | (pTTParams->ExpTxTrigNbr << FDCAN_TTMLM_ENTT_Pos))); } if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER) { MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CCM, pTTParams->BasicCyclesNbr); } /* Configure input triggers: Stop watch and Event */ MODIFY_REG(hfdcan->ttcan->TTTS, (FDCAN_TTTS_SWTSEL | FDCAN_TTTS_EVTSEL), (pTTParams->StopWatchTrigSel | pTTParams->EventTrigSel)); /* Configure trigger memory start address */ StartAddress = (hfdcan->msgRam.EndAddress - SRAMCAN_BASE) / 4U; MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TMSA, (StartAddress << FDCAN_TTTMC_TMSA_Pos)); /* Trigger memory elements number */ MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TME, (pTTParams->TriggerMemoryNbr << FDCAN_TTTMC_TME_Pos)); /* Recalculate End Address */ hfdcan->msgRam.TTMemorySA = hfdcan->msgRam.EndAddress; hfdcan->msgRam.EndAddress = hfdcan->msgRam.TTMemorySA + (pTTParams->TriggerMemoryNbr * 2U * 4U); if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */ { /* Update error code. Message RAM overflow */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; return HAL_ERROR; } else { /* Flush the allocated Message RAM area */ for (RAMcounter = hfdcan->msgRam.TTMemorySA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U) { *(uint32_t *)(RAMcounter) = 0x00000000; } } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the reference message. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param IdType Identifier Type. * This parameter can be a value of @arg FDCAN_id_type. * @param Identifier Reference Identifier. * This parameter must be a number between: * - 0 and 0x7FF, if IdType is FDCAN_STANDARD_ID * - 0 and 0x1FFFFFFF, if IdType is FDCAN_EXTENDED_ID * @param Payload Enable or disable the additional payload. * This parameter can be a value of @arg FDCAN_TT_Reference_Message_Payload. * This parameter is ignored in case of time slaves. * If this parameter is set to FDCAN_TT_REF_MESSAGE_ADD_PAYLOAD, the * following elements are taken from Tx Buffer 0: * - MessageMarker * - TxEventFifoControl * - DataLength * - Data Bytes (payload): * - bytes 2-8, for Level 1 * - bytes 5-8, for Level 0 and Level 2 * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigReferenceMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t IdType, uint32_t Identifier, uint32_t Payload) { /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_ID_TYPE(IdType)); if (IdType == FDCAN_STANDARD_ID) { assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x7FFU)); } else /* IdType == FDCAN_EXTENDED_ID */ { assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x1FFFFFFFU)); } assert_param(IS_FDCAN_TT_REFERENCE_MESSAGE_PAYLOAD(Payload)); if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Configure reference message identifier type, identifier and payload */ if (IdType == FDCAN_EXTENDED_ID) { MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS), (Payload | IdType | Identifier)); } else /* IdType == FDCAN_STANDARD_ID */ { MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS), (Payload | IdType | (Identifier << 18))); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Configure the FDCAN trigger according to the specified * parameters in the FDCAN_TriggerTypeDef structure. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param sTriggerConfig pointer to an FDCAN_TriggerTypeDef structure that * contains the trigger configuration information * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigTrigger(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TriggerTypeDef *sTriggerConfig) { uint32_t CycleCode; uint32_t MessageNumber; uint32_t TriggerElementW1; uint32_t TriggerElementW2; uint32_t *TriggerAddress; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TriggerIndex, 63U)); assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TimeMark, 0xFFFFU)); assert_param(IS_FDCAN_TT_REPEAT_FACTOR(sTriggerConfig->RepeatFactor)); if (sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE) { assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->StartCycle, (sTriggerConfig->RepeatFactor - 1U))); } assert_param(IS_FDCAN_TT_TM_EVENT_INTERNAL(sTriggerConfig->TmEventInt)); assert_param(IS_FDCAN_TT_TM_EVENT_EXTERNAL(sTriggerConfig->TmEventExt)); assert_param(IS_FDCAN_TT_TRIGGER_TYPE(sTriggerConfig->TriggerType)); assert_param(IS_FDCAN_ID_TYPE(sTriggerConfig->FilterType)); if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED)) { assert_param(IS_FDCAN_TX_LOCATION(sTriggerConfig->TxBufferIndex)); } if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER) { if (sTriggerConfig->FilterType == FDCAN_STANDARD_ID) { assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 63U)); } else /* sTriggerConfig->FilterType == FDCAN_EXTENDED_ID */ { assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 127U)); } } if (hfdcan->State == HAL_FDCAN_STATE_READY) { /* Calculate cycle code */ if (sTriggerConfig->RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE) { CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE; } else /* sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */ { CycleCode = sTriggerConfig->RepeatFactor + sTriggerConfig->StartCycle; } /* Build first word of trigger element */ TriggerElementW1 = ((sTriggerConfig->TimeMark << 16) | \ (CycleCode << 8) | \ sTriggerConfig->TmEventInt | \ sTriggerConfig->TmEventExt | \ sTriggerConfig->TriggerType); /* Select message number depending on trigger type (transmission or reception) */ if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER) { MessageNumber = sTriggerConfig->FilterIndex; } else if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) || (sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED)) { MessageNumber = POSITION_VAL(sTriggerConfig->TxBufferIndex); } else { MessageNumber = 0U; } /* Build second word of trigger element */ TriggerElementW2 = ((sTriggerConfig->FilterType >> 7) | (MessageNumber << 16)); /* Calculate trigger address */ TriggerAddress = (uint32_t *)(hfdcan->msgRam.TTMemorySA + (sTriggerConfig->TriggerIndex * 4U * 2U)); /* Write trigger element to the message RAM */ *TriggerAddress = TriggerElementW1; TriggerAddress++; *TriggerAddress = TriggerElementW2; /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY; return HAL_ERROR; } } /** * @brief Schedule global time adjustment for the next reference message. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimePreset time preset value. * This parameter must be a number between: * - 0x0000 and 0x7FFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark + TimePreset * or * - 0x8001 and 0xFFFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark - (0x10000 - TimePreset) * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_SetGlobalTime(FDCAN_HandleTypeDef *hfdcan, uint32_t TimePreset) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_TIME_PRESET(TimePreset)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that the external clock synchronization is enabled */ if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } /* Check that no global time preset is pending */ if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WGTD) == FDCAN_TTOST_WGTD) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; return HAL_ERROR; } /* Configure time preset */ MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_TP, (TimePreset << FDCAN_TTGTP_TP_Pos)); /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Schedule time preset to take effect by the next reference message */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_SGT); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Schedule TUR numerator update for the next reference message. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param NewTURNumerator new value of the TUR numerator. * This parameter must be a number between 0x10000 and 0x1FFFF. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_SetClockSynchronization(FDCAN_HandleTypeDef *hfdcan, uint32_t NewTURNumerator) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_TUR_NUMERATOR(NewTURNumerator)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that the external clock synchronization is enabled */ if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } /* Check that no external clock synchronization is pending */ if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WECS) == FDCAN_TTOST_WECS) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; return HAL_ERROR; } /* Configure new TUR numerator */ MODIFY_REG(hfdcan->ttcan->TURCF, FDCAN_TURCF_NCL, (NewTURNumerator - 0x10000U)); /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Schedule TUR numerator update by the next reference message */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ECS); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Configure stop watch source and polarity. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param Source stop watch source. * This parameter can be a value of @arg FDCAN_TT_stop_watch_source. * @param Polarity stop watch polarity. * This parameter can be a value of @arg FDCAN_TT_stop_watch_polarity. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigStopWatch(FDCAN_HandleTypeDef *hfdcan, uint32_t Source, uint32_t Polarity) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_STOP_WATCH_SOURCE(Source)); assert_param(IS_FDCAN_TT_STOP_WATCH_POLARITY(Polarity)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Select stop watch source and polarity */ MODIFY_REG(hfdcan->ttcan->TTOCN, (FDCAN_TTOCN_SWS | FDCAN_TTOCN_SWP), (Source | Polarity)); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Configure register time mark pulse generation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TimeMarkSource time mark source. * This parameter can be a value of @arg FDCAN_TT_time_mark_source. * @param TimeMarkValue time mark value (reference). * This parameter must be a number between 0 and 0xFFFF. * @param RepeatFactor repeat factor of the cycle for which the time mark is valid. * This parameter can be a value of @arg FDCAN_TT_Repeat_Factor. * @param StartCycle index of the first cycle in which the time mark becomes valid. * This parameter is ignored if RepeatFactor is set to FDCAN_TT_REPEAT_EVERY_CYCLE. * This parameter must be a number between 0 and RepeatFactor. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigRegisterTimeMark(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeMarkSource, uint32_t TimeMarkValue, uint32_t RepeatFactor, uint32_t StartCycle) { uint32_t Counter = 0U; uint32_t CycleCode; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_REGISTER_TIME_MARK_SOURCE(TimeMarkSource)); assert_param(IS_FDCAN_MAX_VALUE(TimeMarkValue, 0xFFFFU)); assert_param(IS_FDCAN_TT_REPEAT_FACTOR(RepeatFactor)); if (RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE) { assert_param(IS_FDCAN_MAX_VALUE(StartCycle, (RepeatFactor - 1U))); } if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable the time mark compare function */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC); if (TimeMarkSource != FDCAN_TT_REG_TIMEMARK_DIABLED) { /* Calculate cycle code */ if (RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE) { CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE; } else /* RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */ { CycleCode = RepeatFactor + StartCycle; } Counter = 0U; /* Wait until the LCKM bit into TTTMK register is reset */ while ((hfdcan->ttcan->TTTMK & FDCAN_TTTMK_LCKM) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Configure time mark value and cycle code */ hfdcan->ttcan->TTTMK = ((TimeMarkValue << FDCAN_TTTMK_TM_Pos) | (CycleCode << FDCAN_TTTMK_TICC_Pos)); Counter = 0U; /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Update the register time mark compare source */ MODIFY_REG(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC, TimeMarkSource); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable register time mark pulse generation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_EnableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable Register Time Mark Interrupt output on fdcan1_rtp */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable register time mark pulse generation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DisableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable Register Time Mark Interrupt output on fdcan1_rtp */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable trigger time mark pulse generation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_EnableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable Trigger Time Mark Interrupt output on fdcan1_tmp */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable trigger time mark pulse generation. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DisableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable Trigger Time Mark Interrupt output on fdcan1_rtp */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable gap control by input pin fdcan1_evt. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_EnableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable gap control by pin fdcan1_evt */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable gap control by input pin fdcan1_evt. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DisableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable gap control by pin fdcan1_evt */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable gap control (finish only) by register time mark interrupt. * The next register time mark interrupt (TTIR.RTMI = "1") will finish * the Gap and start the reference message. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_EnableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable gap control by register time mark interrupt */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable gap control by register time mark interrupt. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DisableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable gap control by register time mark interrupt */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Transmit next reference message with Next_is_Gap = "1". * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_SetNextIsGap(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that the node is configured for external event-synchronized TT operation */ if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Set Next is Gap */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_NIG); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Finish a Gap by requesting start of reference message. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_SetEndOfGap(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that the node is configured for external event-synchronized TT operation */ if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Set Finish Gap */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_FGP); /* Return function status */ return HAL_OK; } else { /* Update error code. Feature not supported for TT Level 0 */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED; return HAL_ERROR; } } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Configure target phase used for external synchronization by event * trigger input pin fdcan1_evt. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TargetPhase defines target value of cycle time when a rising edge * of fdcan1_evt is expected. * This parameter must be a number between 0 and 0xFFFF. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigExternalSyncPhase(FDCAN_HandleTypeDef *hfdcan, uint32_t TargetPhase) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_MAX_VALUE(TargetPhase, 0xFFFFU)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Check that no external schedule synchronization is pending */ if ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_ESCN) == FDCAN_TTOCN_ESCN) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING; return HAL_ERROR; } /* Configure cycle time target phase */ MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_CTP, (TargetPhase << FDCAN_TTGTP_CTP_Pos)); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Synchronize the phase of the FDCAN schedule to an external schedule * using event trigger input pin fdcan1_evt. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_EnableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Enable external synchronization */ SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable external schedule synchronization. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DisableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan) { uint32_t Counter = 0U; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Wait until the LCKC bit into TTOCN register is reset */ while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U) { /* Check for the Timeout */ if (Counter > FDCAN_TIMEOUT_COUNT) { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } /* Increment counter */ Counter++; } /* Disable external synchronization */ CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Get TT operation status. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TTOpStatus pointer to an FDCAN_TTOperationStatusTypeDef structure. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_GetOperationStatus(const FDCAN_HandleTypeDef *hfdcan, FDCAN_TTOperationStatusTypeDef *TTOpStatus) { uint32_t TTStatusReg; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); /* Read the TT operation status register */ TTStatusReg = READ_REG(hfdcan->ttcan->TTOST); /* Fill the TT operation status structure */ TTOpStatus->ErrorLevel = (TTStatusReg & FDCAN_TTOST_EL); TTOpStatus->MasterState = (TTStatusReg & FDCAN_TTOST_MS); TTOpStatus->SyncState = (TTStatusReg & FDCAN_TTOST_SYS); TTOpStatus->GTimeQuality = ((TTStatusReg & FDCAN_TTOST_QGTP) >> FDCAN_TTOST_QGTP_Pos); TTOpStatus->ClockQuality = ((TTStatusReg & FDCAN_TTOST_QCS) >> FDCAN_TTOST_QCS_Pos); TTOpStatus->RefTrigOffset = ((TTStatusReg & FDCAN_TTOST_RTO) >> FDCAN_TTOST_RTO_Pos); TTOpStatus->GTimeDiscPending = ((TTStatusReg & FDCAN_TTOST_WGTD) >> FDCAN_TTOST_WGTD_Pos); TTOpStatus->GapFinished = ((TTStatusReg & FDCAN_TTOST_GFI) >> FDCAN_TTOST_GFI_Pos); TTOpStatus->MasterPriority = ((TTStatusReg & FDCAN_TTOST_TMP) >> FDCAN_TTOST_TMP_Pos); TTOpStatus->GapStarted = ((TTStatusReg & FDCAN_TTOST_GSI) >> FDCAN_TTOST_GSI_Pos); TTOpStatus->WaitForEvt = ((TTStatusReg & FDCAN_TTOST_WFE) >> FDCAN_TTOST_WFE_Pos); TTOpStatus->AppWdgEvt = ((TTStatusReg & FDCAN_TTOST_AWE) >> FDCAN_TTOST_AWE_Pos); TTOpStatus->ECSPending = ((TTStatusReg & FDCAN_TTOST_WECS) >> FDCAN_TTOST_WECS_Pos); TTOpStatus->PhaseLock = ((TTStatusReg & FDCAN_TTOST_SPL) >> FDCAN_TTOST_SPL_Pos); /* Return function status */ return HAL_OK; } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group5 Interrupts management * @brief Interrupts management * @verbatim ============================================================================== ##### Interrupts management ##### ============================================================================== [..] This section provides functions allowing to: (+) HAL_FDCAN_ConfigInterruptLines : Assign interrupts to either Interrupt line 0 or 1 (+) HAL_FDCAN_TT_ConfigInterruptLines : Assign TT interrupts to either Interrupt line 0 or 1 (+) HAL_FDCAN_ActivateNotification : Enable interrupts (+) HAL_FDCAN_DeactivateNotification : Disable interrupts (+) HAL_FDCAN_TT_ActivateNotification : Enable TT interrupts (+) HAL_FDCAN_TT_DeactivateNotification : Disable TT interrupts (+) HAL_FDCAN_IRQHandler : Handles FDCAN interrupt request @endverbatim * @{ */ /** * @brief Assign interrupts to either Interrupt line 0 or 1. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ITList indicates which interrupts will be assigned to the selected interrupt line. * This parameter can be any combination of @arg FDCAN_Interrupts. * @param InterruptLine Interrupt line. * This parameter can be a value of @arg FDCAN_Interrupt_Line. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t ITList, uint32_t InterruptLine) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_IT(ITList)); assert_param(IS_FDCAN_IT_LINE(InterruptLine)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Assign list of interrupts to the selected line */ if (InterruptLine == FDCAN_INTERRUPT_LINE0) { CLEAR_BIT(hfdcan->Instance->ILS, ITList); } else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */ { SET_BIT(hfdcan->Instance->ILS, ITList); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Assign TT interrupts to either Interrupt line 0 or 1. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TTITList indicates which interrupts will be assigned to the selected interrupt line. * This parameter can be any combination of @arg FDCAN_TTInterrupts. * @param InterruptLine Interrupt line. * This parameter can be a value of @arg FDCAN_Interrupt_Line. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t TTITList, uint32_t InterruptLine) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_IT(TTITList)); assert_param(IS_FDCAN_IT_LINE(InterruptLine)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Assign list of interrupts to the selected line */ if (InterruptLine == FDCAN_INTERRUPT_LINE0) { CLEAR_BIT(hfdcan->ttcan->TTILS, TTITList); } else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */ { SET_BIT(hfdcan->ttcan->TTILS, TTITList); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ActiveITs indicates which interrupts will be enabled. * This parameter can be any combination of @arg FDCAN_Interrupts. * @param BufferIndexes Tx Buffer Indexes. * This parameter can be any combination of @arg FDCAN_Tx_location. * This parameter is ignored if ActiveITs does not include one of the following: * - FDCAN_IT_TX_COMPLETE * - FDCAN_IT_TX_ABORT_COMPLETE * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveITs, uint32_t BufferIndexes) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_IT(ActiveITs)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Enable Interrupt lines */ if ((ActiveITs & hfdcan->Instance->ILS) == 0U) { /* Enable Interrupt line 0 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } else if ((ActiveITs & hfdcan->Instance->ILS) == ActiveITs) { /* Enable Interrupt line 1 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } else { /* Enable Interrupt lines 0 and 1 */ hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1); } if ((ActiveITs & FDCAN_IT_TX_COMPLETE) != 0U) { /* Enable Tx Buffer Transmission Interrupt to set TC flag in IR register, but interrupt will only occur if TC is enabled in IE register */ SET_BIT(hfdcan->Instance->TXBTIE, BufferIndexes); } if ((ActiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) { /* Enable Tx Buffer Cancellation Finished Interrupt to set TCF flag in IR register, but interrupt will only occur if TCF is enabled in IE register */ SET_BIT(hfdcan->Instance->TXBCIE, BufferIndexes); } /* Enable the selected interrupts */ __HAL_FDCAN_ENABLE_IT(hfdcan, ActiveITs); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param InactiveITs indicates which interrupts will be disabled. * This parameter can be any combination of @arg FDCAN_Interrupts. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveITs) { uint32_t ITLineSelection; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_IT(InactiveITs)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Disable the selected interrupts */ __HAL_FDCAN_DISABLE_IT(hfdcan, InactiveITs); if ((InactiveITs & FDCAN_IT_TX_COMPLETE) != 0U) { /* Disable Tx Buffer Transmission Interrupts */ CLEAR_REG(hfdcan->Instance->TXBTIE); } if ((InactiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U) { /* Disable Tx Buffer Cancellation Finished Interrupt */ CLEAR_REG(hfdcan->Instance->TXBCIE); } ITLineSelection = hfdcan->Instance->ILS; if ((hfdcan->Instance->IE | ITLineSelection) == ITLineSelection) { /* Disable Interrupt line 0 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } if ((hfdcan->Instance->IE & ITLineSelection) == 0U) { /* Disable Interrupt line 1 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Enable TT interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ActiveTTITs indicates which TT interrupts will be enabled. * This parameter can be any combination of @arg FDCAN_TTInterrupts. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveTTITs) { HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_IT(ActiveTTITs)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Enable Interrupt lines */ if ((ActiveTTITs & hfdcan->ttcan->TTILS) == 0U) { /* Enable Interrupt line 0 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } else if ((ActiveTTITs & hfdcan->ttcan->TTILS) == ActiveTTITs) { /* Enable Interrupt line 1 */ SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } else { /* Enable Interrupt lines 0 and 1 */ hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1); } /* Enable the selected TT interrupts */ __HAL_FDCAN_TT_ENABLE_IT(hfdcan, ActiveTTITs); /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Disable TT interrupts. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param InactiveTTITs indicates which TT interrupts will be disabled. * This parameter can be any combination of @arg FDCAN_TTInterrupts. * @retval HAL status */ HAL_StatusTypeDef HAL_FDCAN_TT_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveTTITs) { uint32_t ITLineSelection; HAL_FDCAN_StateTypeDef state = hfdcan->State; /* Check function parameters */ assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance)); assert_param(IS_FDCAN_TT_IT(InactiveTTITs)); if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY)) { /* Disable the selected TT interrupts */ __HAL_FDCAN_TT_DISABLE_IT(hfdcan, InactiveTTITs); ITLineSelection = hfdcan->ttcan->TTILS; if ((hfdcan->ttcan->TTIE | ITLineSelection) == ITLineSelection) { /* Disable Interrupt line 0 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0); } if ((hfdcan->ttcan->TTIE & ITLineSelection) == 0U) { /* Disable interrupt line 1 */ CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1); } /* Return function status */ return HAL_OK; } else { /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED; return HAL_ERROR; } } /** * @brief Handles FDCAN interrupt request. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ void HAL_FDCAN_IRQHandler(FDCAN_HandleTypeDef *hfdcan) { uint32_t ClkCalibrationITs; uint32_t TxEventFifoITs; uint32_t RxFifo0ITs; uint32_t RxFifo1ITs; uint32_t Errors; uint32_t ErrorStatusITs; uint32_t TransmittedBuffers; uint32_t AbortedBuffers; uint32_t TTSchedSyncITs; uint32_t TTTimeMarkITs; uint32_t TTGlobTimeITs; uint32_t TTDistErrors; uint32_t TTFatalErrors; uint32_t SWTime; uint32_t SWCycleCount; uint32_t itsourceIE; uint32_t itsourceTTIE; uint32_t itflagIR; uint32_t itflagTTIR; ClkCalibrationITs = (FDCAN_CCU->IR << 30); ClkCalibrationITs &= (FDCAN_CCU->IE << 30); TxEventFifoITs = hfdcan->Instance->IR & FDCAN_TX_EVENT_FIFO_MASK; TxEventFifoITs &= hfdcan->Instance->IE; RxFifo0ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO0_MASK; RxFifo0ITs &= hfdcan->Instance->IE; RxFifo1ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO1_MASK; RxFifo1ITs &= hfdcan->Instance->IE; Errors = hfdcan->Instance->IR & FDCAN_ERROR_MASK; Errors &= hfdcan->Instance->IE; ErrorStatusITs = hfdcan->Instance->IR & FDCAN_ERROR_STATUS_MASK; ErrorStatusITs &= hfdcan->Instance->IE; itsourceIE = hfdcan->Instance->IE; itflagIR = hfdcan->Instance->IR; /* High Priority Message interrupt management *******************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_HIGH_PRIORITY_MSG) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG) != RESET) { /* Clear the High Priority Message flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->HighPriorityMessageCallback(hfdcan); #else /* High Priority Message Callback */ HAL_FDCAN_HighPriorityMessageCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Transmission Abort interrupt management **********************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_ABORT_COMPLETE) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_ABORT_COMPLETE) != RESET) { /* List of aborted monitored buffers */ AbortedBuffers = hfdcan->Instance->TXBCF; AbortedBuffers &= hfdcan->Instance->TXBCIE; /* Clear the Transmission Cancellation flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxBufferAbortCallback(hfdcan, AbortedBuffers); #else /* Transmission Cancellation Callback */ HAL_FDCAN_TxBufferAbortCallback(hfdcan, AbortedBuffers); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Clock calibration unit interrupts management *****************************/ if (ClkCalibrationITs != 0U) { /* Clear the Clock Calibration flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, ClkCalibrationITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->ClockCalibrationCallback(hfdcan, ClkCalibrationITs); #else /* Clock Calibration Callback */ HAL_FDCAN_ClockCalibrationCallback(hfdcan, ClkCalibrationITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Tx event FIFO interrupts management **************************************/ if (TxEventFifoITs != 0U) { /* Clear the Tx Event FIFO flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, TxEventFifoITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxEventFifoCallback(hfdcan, TxEventFifoITs); #else /* Tx Event FIFO Callback */ HAL_FDCAN_TxEventFifoCallback(hfdcan, TxEventFifoITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Rx FIFO 0 interrupts management ******************************************/ if (RxFifo0ITs != 0U) { /* Clear the Rx FIFO 0 flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo0ITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->RxFifo0Callback(hfdcan, RxFifo0ITs); #else /* Rx FIFO 0 Callback */ HAL_FDCAN_RxFifo0Callback(hfdcan, RxFifo0ITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Rx FIFO 1 interrupts management ******************************************/ if (RxFifo1ITs != 0U) { /* Clear the Rx FIFO 1 flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo1ITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->RxFifo1Callback(hfdcan, RxFifo1ITs); #else /* Rx FIFO 1 Callback */ HAL_FDCAN_RxFifo1Callback(hfdcan, RxFifo1ITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Tx FIFO empty interrupt management ***************************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_FIFO_EMPTY) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_FIFO_EMPTY) != RESET) { /* Clear the Tx FIFO empty flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxFifoEmptyCallback(hfdcan); #else /* Tx FIFO empty Callback */ HAL_FDCAN_TxFifoEmptyCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Transmission Complete interrupt management *******************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_COMPLETE) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_COMPLETE) != RESET) { /* List of transmitted monitored buffers */ TransmittedBuffers = hfdcan->Instance->TXBTO; TransmittedBuffers &= hfdcan->Instance->TXBTIE; /* Clear the Transmission Complete flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TxBufferCompleteCallback(hfdcan, TransmittedBuffers); #else /* Transmission Complete Callback */ HAL_FDCAN_TxBufferCompleteCallback(hfdcan, TransmittedBuffers); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Rx Buffer New Message interrupt management *******************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_BUFFER_NEW_MESSAGE) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE) != RESET) { /* Clear the Rx Buffer New Message flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->RxBufferNewMessageCallback(hfdcan); #else /* Rx Buffer New Message Callback */ HAL_FDCAN_RxBufferNewMessageCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Timestamp Wraparound interrupt management ********************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMESTAMP_WRAPAROUND) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMESTAMP_WRAPAROUND) != RESET) { /* Clear the Timestamp Wraparound flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TimestampWraparoundCallback(hfdcan); #else /* Timestamp Wraparound Callback */ HAL_FDCAN_TimestampWraparoundCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Timeout Occurred interrupt management ************************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMEOUT_OCCURRED) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMEOUT_OCCURRED) != RESET) { /* Clear the Timeout Occurred flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TimeoutOccurredCallback(hfdcan); #else /* Timeout Occurred Callback */ HAL_FDCAN_TimeoutOccurredCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* Message RAM access failure interrupt management **************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RAM_ACCESS_FAILURE) != RESET) { if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RAM_ACCESS_FAILURE) != RESET) { /* Clear the Message RAM access failure flag */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE); /* Update error code */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_RAM_ACCESS; } } /* Error Status interrupts management ***************************************/ if (ErrorStatusITs != 0U) { /* Clear the Error flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, ErrorStatusITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->ErrorStatusCallback(hfdcan, ErrorStatusITs); #else /* Error Status Callback */ HAL_FDCAN_ErrorStatusCallback(hfdcan, ErrorStatusITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* Error interrupts management **********************************************/ if (Errors != 0U) { /* Clear the Error flags */ __HAL_FDCAN_CLEAR_FLAG(hfdcan, Errors); /* Update error code */ hfdcan->ErrorCode |= Errors; } if (hfdcan->Instance == FDCAN1) { if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != 0U) { TTSchedSyncITs = hfdcan->ttcan->TTIR & FDCAN_TT_SCHEDULE_SYNC_MASK; TTSchedSyncITs &= hfdcan->ttcan->TTIE; TTTimeMarkITs = hfdcan->ttcan->TTIR & FDCAN_TT_TIME_MARK_MASK; TTTimeMarkITs &= hfdcan->ttcan->TTIE; TTGlobTimeITs = hfdcan->ttcan->TTIR & FDCAN_TT_GLOBAL_TIME_MASK; TTGlobTimeITs &= hfdcan->ttcan->TTIE; TTDistErrors = hfdcan->ttcan->TTIR & FDCAN_TT_DISTURBING_ERROR_MASK; TTDistErrors &= hfdcan->ttcan->TTIE; TTFatalErrors = hfdcan->ttcan->TTIR & FDCAN_TT_FATAL_ERROR_MASK; TTFatalErrors &= hfdcan->ttcan->TTIE; itsourceTTIE = hfdcan->ttcan->TTIE; itflagTTIR = hfdcan->ttcan->TTIR; /* TT Schedule Synchronization interrupts management **********************/ if (TTSchedSyncITs != 0U) { /* Clear the TT Schedule Synchronization flags */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTSchedSyncITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs); #else /* TT Schedule Synchronization Callback */ HAL_FDCAN_TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* TT Time Mark interrupts management *************************************/ if (TTTimeMarkITs != 0U) { /* Clear the TT Time Mark flags */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTTimeMarkITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TT_TimeMarkCallback(hfdcan, TTTimeMarkITs); #else /* TT Time Mark Callback */ HAL_FDCAN_TT_TimeMarkCallback(hfdcan, TTTimeMarkITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* TT Stop Watch interrupt management *************************************/ if (FDCAN_CHECK_IT_SOURCE(itsourceTTIE, FDCAN_TT_IT_STOP_WATCH) != RESET) { if (FDCAN_CHECK_FLAG(itflagTTIR, FDCAN_TT_FLAG_STOP_WATCH) != RESET) { /* Retrieve Stop watch Time and Cycle count */ SWTime = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_SWV) >> FDCAN_TTCPT_SWV_Pos); SWCycleCount = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_CCV) >> FDCAN_TTCPT_CCV_Pos); /* Clear the TT Stop Watch flag */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, FDCAN_TT_FLAG_STOP_WATCH); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount); #else /* TT Stop Watch Callback */ HAL_FDCAN_TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /* TT Global Time interrupts management ***********************************/ if (TTGlobTimeITs != 0U) { /* Clear the TT Global Time flags */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTGlobTimeITs); #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs); #else /* TT Global Time Callback */ HAL_FDCAN_TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } /* TT Disturbing Error interrupts management ******************************/ if (TTDistErrors != 0U) { /* Clear the TT Disturbing Error flags */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTDistErrors); /* Update error code */ hfdcan->ErrorCode |= TTDistErrors; } /* TT Fatal Error interrupts management ***********************************/ if (TTFatalErrors != 0U) { /* Clear the TT Fatal Error flags */ __HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTFatalErrors); /* Update error code */ hfdcan->ErrorCode |= TTFatalErrors; } } } if (hfdcan->ErrorCode != HAL_FDCAN_ERROR_NONE) { #if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1 /* Call registered callback*/ hfdcan->ErrorCallback(hfdcan); #else /* Error Callback */ HAL_FDCAN_ErrorCallback(hfdcan); #endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */ } } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group6 Callback functions * @brief FDCAN Callback functions * @verbatim ============================================================================== ##### Callback functions ##### ============================================================================== [..] This subsection provides the following callback functions: (+) HAL_FDCAN_ClockCalibrationCallback (+) HAL_FDCAN_TxEventFifoCallback (+) HAL_FDCAN_RxFifo0Callback (+) HAL_FDCAN_RxFifo1Callback (+) HAL_FDCAN_TxFifoEmptyCallback (+) HAL_FDCAN_TxBufferCompleteCallback (+) HAL_FDCAN_TxBufferAbortCallback (+) HAL_FDCAN_RxBufferNewMessageCallback (+) HAL_FDCAN_HighPriorityMessageCallback (+) HAL_FDCAN_TimestampWraparoundCallback (+) HAL_FDCAN_TimeoutOccurredCallback (+) HAL_FDCAN_ErrorCallback (+) HAL_FDCAN_ErrorStatusCallback (+) HAL_FDCAN_TT_ScheduleSyncCallback (+) HAL_FDCAN_TT_TimeMarkCallback (+) HAL_FDCAN_TT_StopWatchCallback (+) HAL_FDCAN_TT_GlobalTimeCallback @endverbatim * @{ */ /** * @brief Clock Calibration callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ClkCalibrationITs indicates which Clock Calibration interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Clock_Calibration_Interrupts. * @retval None */ __weak void HAL_FDCAN_ClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ClkCalibrationITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(ClkCalibrationITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_ClockCalibrationCallback could be implemented in the user file */ } /** * @brief Tx Event callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TxEventFifoITs indicates which Tx Event FIFO interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Tx_Event_Fifo_Interrupts. * @retval None */ __weak void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TxEventFifoITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(TxEventFifoITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxEventFifoCallback could be implemented in the user file */ } /** * @brief Rx FIFO 0 callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo0ITs indicates which Rx FIFO 0 interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Rx_Fifo0_Interrupts. * @retval None */ __weak void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(RxFifo0ITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_RxFifo0Callback could be implemented in the user file */ } /** * @brief Rx FIFO 1 callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param RxFifo1ITs indicates which Rx FIFO 1 interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Rx_Fifo1_Interrupts. * @retval None */ __weak void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(RxFifo1ITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_RxFifo1Callback could be implemented in the user file */ } /** * @brief Tx FIFO Empty callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TxFifoEmptyCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxFifoEmptyCallback could be implemented in the user file */ } /** * @brief Transmission Complete callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndexes Indexes of the transmitted buffers. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval None */ __weak void HAL_FDCAN_TxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(BufferIndexes); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxBufferCompleteCallback could be implemented in the user file */ } /** * @brief Transmission Cancellation callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param BufferIndexes Indexes of the aborted buffers. * This parameter can be any combination of @arg FDCAN_Tx_location. * @retval None */ __weak void HAL_FDCAN_TxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(BufferIndexes); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TxBufferAbortCallback could be implemented in the user file */ } /** * @brief Rx Buffer New Message callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_RxBufferNewMessageCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_RxBufferNewMessageCallback could be implemented in the user file */ } /** * @brief Timestamp Wraparound callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TimestampWraparoundCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TimestampWraparoundCallback could be implemented in the user file */ } /** * @brief Timeout Occurred callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_TimeoutOccurredCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TimeoutOccurredCallback could be implemented in the user file */ } /** * @brief High Priority Message callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_HighPriorityMessageCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_HighPriorityMessageCallback could be implemented in the user file */ } /** * @brief Error callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval None */ __weak void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_ErrorCallback could be implemented in the user file */ } /** * @brief Error status callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param ErrorStatusITs indicates which Error Status interrupts are signaled. * This parameter can be any combination of @arg FDCAN_Error_Status_Interrupts. * @retval None */ __weak void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(ErrorStatusITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_ErrorStatusCallback could be implemented in the user file */ } /** * @brief TT Schedule Synchronization callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TTSchedSyncITs indicates which TT Schedule Synchronization interrupts are signaled. * This parameter can be any combination of @arg FDCAN_TTScheduleSynchronization_Interrupts. * @retval None */ __weak void HAL_FDCAN_TT_ScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTSchedSyncITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(TTSchedSyncITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TT_ScheduleSyncCallback could be implemented in the user file */ } /** * @brief TT Time Mark callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TTTimeMarkITs indicates which TT Schedule Synchronization interrupts are signaled. * This parameter can be any combination of @arg FDCAN_TTTimeMark_Interrupts. * @retval None */ __weak void HAL_FDCAN_TT_TimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTTimeMarkITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(TTTimeMarkITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TT_TimeMarkCallback could be implemented in the user file */ } /** * @brief TT Stop Watch callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param SWTime Time Value captured at the Stop Watch Trigger pin (fdcan1_swt) falling/rising * edge (as configured via HAL_FDCAN_TTConfigStopWatch). * This parameter is a number between 0 and 0xFFFF. * @param SWCycleCount Cycle count value captured together with SWTime. * This parameter is a number between 0 and 0x3F. * @retval None */ __weak void HAL_FDCAN_TT_StopWatchCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t SWTime, uint32_t SWCycleCount) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(SWTime); UNUSED(SWCycleCount); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TT_StopWatchCallback could be implemented in the user file */ } /** * @brief TT Global Time callback. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param TTGlobTimeITs indicates which TT Global Time interrupts are signaled. * This parameter can be any combination of @arg FDCAN_TTGlobalTime_Interrupts. * @retval None */ __weak void HAL_FDCAN_TT_GlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTGlobTimeITs) { /* Prevent unused argument(s) compilation warning */ UNUSED(hfdcan); UNUSED(TTGlobTimeITs); /* NOTE: This function Should not be modified, when the callback is needed, the HAL_FDCAN_TT_GlobalTimeCallback could be implemented in the user file */ } /** * @} */ /** @defgroup FDCAN_Exported_Functions_Group7 Peripheral State functions * @brief FDCAN Peripheral State functions * @verbatim ============================================================================== ##### Peripheral State functions ##### ============================================================================== [..] This subsection provides functions allowing to : (+) HAL_FDCAN_GetState() : Return the FDCAN state. (+) HAL_FDCAN_GetError() : Return the FDCAN error code if any. @endverbatim * @{ */ /** * @brief Return the FDCAN state * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL state */ HAL_FDCAN_StateTypeDef HAL_FDCAN_GetState(const FDCAN_HandleTypeDef *hfdcan) { /* Return FDCAN state */ return hfdcan->State; } /** * @brief Return the FDCAN error code * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval FDCAN Error Code */ uint32_t HAL_FDCAN_GetError(const FDCAN_HandleTypeDef *hfdcan) { /* Return FDCAN error code */ return hfdcan->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup FDCAN_Private_Functions FDCAN Private Functions * @{ */ /** * @brief Calculate each RAM block start address and size * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @retval HAL status */ static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan) { uint32_t RAMcounter; uint32_t StartAddress; StartAddress = hfdcan->Init.MessageRAMOffset; /* Standard filter list start address */ MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_FLSSA, (StartAddress << FDCAN_SIDFC_FLSSA_Pos)); /* Standard filter elements number */ MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_LSS, (hfdcan->Init.StdFiltersNbr << FDCAN_SIDFC_LSS_Pos)); /* Extended filter list start address */ StartAddress += hfdcan->Init.StdFiltersNbr; MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_FLESA, (StartAddress << FDCAN_XIDFC_FLESA_Pos)); /* Extended filter elements number */ MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_LSE, (hfdcan->Init.ExtFiltersNbr << FDCAN_XIDFC_LSE_Pos)); /* Rx FIFO 0 start address */ StartAddress += (hfdcan->Init.ExtFiltersNbr * 2U); MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0SA, (StartAddress << FDCAN_RXF0C_F0SA_Pos)); /* Rx FIFO 0 elements number */ MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0S, (hfdcan->Init.RxFifo0ElmtsNbr << FDCAN_RXF0C_F0S_Pos)); /* Rx FIFO 1 start address */ StartAddress += (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize); MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1SA, (StartAddress << FDCAN_RXF1C_F1SA_Pos)); /* Rx FIFO 1 elements number */ MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1S, (hfdcan->Init.RxFifo1ElmtsNbr << FDCAN_RXF1C_F1S_Pos)); /* Rx buffer list start address */ StartAddress += (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize); MODIFY_REG(hfdcan->Instance->RXBC, FDCAN_RXBC_RBSA, (StartAddress << FDCAN_RXBC_RBSA_Pos)); /* Tx event FIFO start address */ StartAddress += (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize); MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFSA, (StartAddress << FDCAN_TXEFC_EFSA_Pos)); /* Tx event FIFO elements number */ MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFS, (hfdcan->Init.TxEventsNbr << FDCAN_TXEFC_EFS_Pos)); /* Tx buffer list start address */ StartAddress += (hfdcan->Init.TxEventsNbr * 2U); MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TBSA, (StartAddress << FDCAN_TXBC_TBSA_Pos)); /* Dedicated Tx buffers number */ MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_NDTB, (hfdcan->Init.TxBuffersNbr << FDCAN_TXBC_NDTB_Pos)); /* Tx FIFO/queue elements number */ MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TFQS, (hfdcan->Init.TxFifoQueueElmtsNbr << FDCAN_TXBC_TFQS_Pos)); hfdcan->msgRam.StandardFilterSA = SRAMCAN_BASE + (hfdcan->Init.MessageRAMOffset * 4U); hfdcan->msgRam.ExtendedFilterSA = hfdcan->msgRam.StandardFilterSA + (hfdcan->Init.StdFiltersNbr * 4U); hfdcan->msgRam.RxFIFO0SA = hfdcan->msgRam.ExtendedFilterSA + (hfdcan->Init.ExtFiltersNbr * 2U * 4U); hfdcan->msgRam.RxFIFO1SA = hfdcan->msgRam.RxFIFO0SA + (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize * 4U); hfdcan->msgRam.RxBufferSA = hfdcan->msgRam.RxFIFO1SA + (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize * 4U); hfdcan->msgRam.TxEventFIFOSA = hfdcan->msgRam.RxBufferSA + (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize * 4U); hfdcan->msgRam.TxBufferSA = hfdcan->msgRam.TxEventFIFOSA + (hfdcan->Init.TxEventsNbr * 2U * 4U); hfdcan->msgRam.TxFIFOQSA = hfdcan->msgRam.TxBufferSA + (hfdcan->Init.TxBuffersNbr * hfdcan->Init.TxElmtSize * 4U); hfdcan->msgRam.EndAddress = hfdcan->msgRam.TxFIFOQSA + (hfdcan->Init.TxFifoQueueElmtsNbr * hfdcan->Init.TxElmtSize * 4U); if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */ { /* Update error code. Message RAM overflow */ hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM; /* Change FDCAN state */ hfdcan->State = HAL_FDCAN_STATE_ERROR; return HAL_ERROR; } else { /* Flush the allocated Message RAM area */ for (RAMcounter = hfdcan->msgRam.StandardFilterSA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U) { *(uint32_t *)(RAMcounter) = 0x00000000; } } /* Return function status */ return HAL_OK; } /** * @brief Copy Tx message to the message RAM. * @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains * the configuration information for the specified FDCAN. * @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure. * @param pTxData pointer to a buffer containing the payload of the Tx frame. * @param BufferIndex index of the buffer to be configured. * @retval none */ static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader, const uint8_t *pTxData, uint32_t BufferIndex) { uint32_t TxElementW1; uint32_t TxElementW2; uint32_t *TxAddress; uint32_t ByteCounter; /* Build first word of Tx header element */ if (pTxHeader->IdType == FDCAN_STANDARD_ID) { TxElementW1 = (pTxHeader->ErrorStateIndicator | FDCAN_STANDARD_ID | pTxHeader->TxFrameType | (pTxHeader->Identifier << 18U)); } else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */ { TxElementW1 = (pTxHeader->ErrorStateIndicator | FDCAN_EXTENDED_ID | pTxHeader->TxFrameType | pTxHeader->Identifier); } /* Build second word of Tx header element */ TxElementW2 = ((pTxHeader->MessageMarker << 24U) | pTxHeader->TxEventFifoControl | pTxHeader->FDFormat | pTxHeader->BitRateSwitch | (pTxHeader->DataLength << 16U)); /* Calculate Tx element address */ TxAddress = (uint32_t *)(hfdcan->msgRam.TxBufferSA + (BufferIndex * hfdcan->Init.TxElmtSize * 4U)); /* Write Tx element header to the message RAM */ *TxAddress = TxElementW1; TxAddress++; *TxAddress = TxElementW2; TxAddress++; /* Write Tx payload to the message RAM */ for (ByteCounter = 0; ByteCounter < DLCtoBytes[pTxHeader->DataLength]; ByteCounter += 4U) { *TxAddress = (((uint32_t)pTxData[ByteCounter + 3U] << 24U) | ((uint32_t)pTxData[ByteCounter + 2U] << 16U) | ((uint32_t)pTxData[ByteCounter + 1U] << 8U) | (uint32_t)pTxData[ByteCounter]); TxAddress++; } } /** * @} */ #endif /* HAL_FDCAN_MODULE_ENABLED */ /** * @} */ /** * @} */ #endif /* FDCAN1 */