Compare commits

...

3 Commits

Author SHA1 Message Date
Jasper Blanckenburg 208d84e2a5 Integrate current
The current counter on the shunt can't be activated for some reason.
2023-06-25 16:41:29 +02:00
Jasper Blanckenburg 5dba504e10 Basic SoC estimation 2023-06-25 15:29:08 +02:00
Jasper Blanckenburg 2eb7109416 Revert "Implementation of SoC Prediction"
This reverts commit c4543e7e01.
2023-06-25 15:28:53 +02:00
8 changed files with 107 additions and 133 deletions

View File

@ -10,16 +10,17 @@
#define SHUNT_THRESH_OVERTEMP 1000 // 1/10 °C
typedef struct {
int32_t current;
int32_t voltage_bat;
int32_t voltage_veh;
int32_t voltage3;
int32_t current; // mA
int32_t voltage_bat; // mV
int32_t voltage_veh; // mV
int32_t voltage3; // mV
int32_t busbartemp;
int32_t power;
int32_t energy;
int32_t current_counter;
float current_counter; // mAs
uint32_t last_message;
uint32_t last_current_message;
} ShuntData;
extern ShuntData shunt_data;
@ -28,6 +29,4 @@ void shunt_check();
void shunt_handle_can_msg(uint16_t id, const uint8_t *data);
int32_t shunt_getcurrent();
#endif // INC_SHUNT_MONITORING_H

View File

@ -49,6 +49,5 @@ void slaves_check();
void slaves_handle_panic(const uint8_t *data);
void slaves_handle_status(const uint8_t *data);
void slaves_handle_log(const uint8_t *data);
uint16_t slaves_get_minimum_voltage();
#endif // INC_SLAVE_MONITORING_H

View File

@ -3,16 +3,16 @@
#include <stdint.h>
extern uint8_t current_soc;
#define N_MODELPARAMETERS 11
#define BATTERYCAPACITYAs (21000.0*3600) //TODO Check if value is correct Cap in Ah * 3600 (Convert to As)
extern float current_soc;
void soc_init();
void soc_update(int32_t shunt_current);
void soe_update();
void soap_update();
void soc_update();
typedef struct {
uint16_t ocv;
float soc;
} ocv_soc_pair_t;
extern ocv_soc_pair_t OCV_SOC_PAIRS[];
float soc_for_ocv(uint16_t ocv);
#endif // INC_SOC_ESTIMATION_H

View File

@ -8,6 +8,7 @@
#include "can-halal.h"
#include <math.h>
#include <stdint.h>
void can_init(CAN_HandleTypeDef *handle) {
@ -22,7 +23,7 @@ void can_init(CAN_HandleTypeDef *handle) {
HAL_StatusTypeDef can_send_status() {
uint8_t data[6];
data[0] = ts_state.current_state | (sdc_closed << 7);
data[1] = current_soc;
data[1] = roundf(current_soc);
ftcan_marshal_unsigned(&data[2], min_voltage, 2);
ftcan_marshal_signed(&data[4], max_temp, 2);
return ftcan_transmit(CAN_ID_AMS_STATUS, data, sizeof(data));

View File

@ -50,7 +50,6 @@
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc2;
CAN_HandleTypeDef hcan;
UART_HandleTypeDef huart1;
@ -92,7 +91,7 @@ static void loop_delay() {
*/
int main(void) {
/* USER CODE BEGIN 1 */
uint8_t soc_init_complete = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
@ -122,6 +121,7 @@ int main(void) {
slaves_init();
shunt_init();
ts_sm_init();
soc_init();
HAL_GPIO_WritePin(AMS_NERROR_GPIO_Port, AMS_NERROR_Pin, GPIO_PIN_SET);
/* USER CODE END 2 */
@ -138,17 +138,10 @@ int main(void) {
slaves_check();
shunt_check();
ts_sm_update();
if(soc_init_complete){
soc_update(shunt_getcurrent());
}
else
{
soc_init();
soc_init_complete = 1;
}
soc_update();
can_send_status();
loop_delay();
loop_delay();
}
/* USER CODE END 3 */
}

View File

@ -20,6 +20,7 @@ void shunt_init() {
shunt_data.energy = 0;
shunt_data.current_counter = 0;
shunt_data.last_message = 0;
shunt_data.last_current_message = 0;
}
void shunt_check() {
@ -46,6 +47,12 @@ void shunt_handle_can_msg(uint16_t id, const uint8_t *data) {
switch (id) {
case CAN_ID_SHUNT_CURRENT:
shunt_data.current = result;
if (shunt_data.last_current_message > 0) {
uint32_t now = HAL_GetTick();
float dt = (now - shunt_data.last_current_message) * 0.001f;
shunt_data.current_counter += shunt_data.current * dt;
}
shunt_data.last_current_message = HAL_GetTick();
break;
case CAN_ID_SHUNT_VOLTAGE1:
shunt_data.voltage_bat = result;
@ -63,15 +70,13 @@ void shunt_handle_can_msg(uint16_t id, const uint8_t *data) {
shunt_data.power = result;
break;
case CAN_ID_SHUNT_CURRENT_COUNTER:
shunt_data.current_counter = result;
// TODO: Use this when we get the shunt to emit current counter data (the
// shunt apparently emits As, not mAs)
// shunt_data.current_counter = result * 1000;
break;
case CAN_ID_SHUNT_ENERGY_COUNTER:
shunt_data.energy = result;
break;
}
}
int32_t shunt_getcurrent()
{
return shunt_data.current;
}

View File

@ -136,14 +136,3 @@ void slaves_handle_status(const uint8_t *data) {
void slaves_handle_log(const uint8_t *data) {
// TODO
}
uint16_t slaves_get_minimum_voltage()
{
uint16_t minvoltage = 50000;
for(uint8_t idx = 0; idx < N_SLAVES;idx++){
if(slaves->min_voltage < minvoltage){
min_voltage = slaves->min_voltage;
}
}
return minvoltage;
}

View File

@ -1,103 +1,91 @@
#include "soc_estimation.h"
#include <stdint.h>
#include "shunt_monitoring.h"
#include "slave_monitoring.h"
#include "stm32f3xx_hal.h"
#include <stddef.h>
#include <stdint.h>
//------------------------------------Battery RC and OCV-SoC Parameters-----------------------------------------
//@Note Parameters were obtained by EIS Measurements at the start of the season
//If the errror with this values is to large, consider retesting some cells
const float SOC[N_MODELPARAMETERS]={0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1};
const float R0[N_MODELPARAMETERS]={0.0089,0.0087,0.0090,0.0087,0.0087,0.0087,0.0088,0.0088,0.0087,0.0088,0.0089};
const float R1[N_MODELPARAMETERS]={0.0164,0.0063,0.0050,0.0055,0.0051,0.0052,0.0057,0.0048,0.0059,0.0055,0.0061};
const float C1[N_MODELPARAMETERS]={2.5694,0.2649,0.2876,0.2594,0.2415,0.2360,0.2946,0.2558,0.2818,0.2605,0.2763};
const float OCV_Data[N_MODELPARAMETERS]={2.762504,3.326231,3.460875,3.57681,3.655326,3.738444,3.835977,3.925841,4.032575,4.078275,4.191449};
#define SOC_ESTIMATION_NO_CURRENT_THRESH 200 // mA
#define SOC_ESTIMATION_NO_CURRENT_TIME 100000 // ms
#define SOC_ESTIMATION_BATTERY_CAPACITY 70300800 // mAs
ocv_soc_pair_t OCV_SOC_PAIRS[] = {
{25000, 0.00f}, {29900, 3.97f}, {32300, 9.36f}, {33200, 12.60f},
{33500, 13.68f}, {34100, 20.15f}, {35300, 32.01f}, {38400, 66.53f},
{40100, 83.79f}, {40200, 90.26f}, {40400, 94.58f}, {41000, 98.89f},
{42000, 100.00f}};
//---------------------------------------------------------------------------------------------------------------
float current_soc;
int current_was_flowing;
uint32_t last_current_time;
uint32_t first_current_time;
float soc_before_current;
float mAs_before_current;
float soc_approxparameterbysoc(float,float*, uint8_t);
float soc_approxsocbyocv(float);
uint8_t current_soc;
float current_floatsoc;
float batterycapacity;
/**
* @brief This Function initializes the SoC Prediction
* @note Because SoC is initalized using the OCV-Curve of the Cell, it is necessary to obtain a valid value
* for the lowest cell voltage before calling this function
*/
void soc_init() {
float minvoltage = ((float)slaves_get_minimum_voltage())/1000;
current_floatsoc = soc_approxsocbyocv(minvoltage);
batterycapacity = BATTERYCAPACITYAs*current_floatsoc;
current_soc = (uint8_t)(current_floatsoc*100);
current_soc = 0;
last_current_time = 0;
current_was_flowing = 1;
}
/**
* @brief Update Function for the State of Charge. Call this Function every time the shunt sends a new current
* @note The SoC Prediction works using a Coulomb Counter to track the SoC. Alternativly and maybe more elegant
* would be to track the SoC using the integrated current counter of the shunt.
* @param shunt_current
*/
void soc_update(int32_t shunt_current) {
// TODO
static uint32_t lasttick = 0;
if(lasttick != 0)
{
uint32_t dt = HAL_GetTick() - lasttick;
batterycapacity += batterycapacity + ((float) dt*shunt_current)/1000;
current_floatsoc = batterycapacity/BATTERYCAPACITYAs;
current_soc = (uint8_t) (current_floatsoc*100);
}
lasttick=HAL_GetTick();
}
void soe_update()
{
//TODO
}
void soap_update()
{
//TODO
}
float soc_approxparameterbysoc(float soc,float* lut, uint8_t lutlen)
{
//TODO
return 0;
}
float soc_approxsocbyocv(float ocv)
{
if(ocv < OCV_Data[0])
return 0;
if(ocv > OCV_Data[N_MODELPARAMETERS])
return 1;
//Iterate through OCV Lookup
uint8_t ocvindex = 0;
for(uint8_t i = 0; i < (N_MODELPARAMETERS-1);i++)
{
if((OCV_Data[i] <= ocv) && (OCV_Data[i+1] > ocv))
{
ocvindex = i;
void soc_update() {
uint32_t now = HAL_GetTick();
if (shunt_data.current >= SOC_ESTIMATION_NO_CURRENT_THRESH) {
last_current_time = now;
if (!current_was_flowing) {
first_current_time = now;
soc_before_current = current_soc;
mAs_before_current = shunt_data.current_counter;
}
current_was_flowing = 1;
} else {
current_was_flowing = 0;
}
float m = (ocv-OCV_Data[ocvindex])/(OCV_Data[ocvindex+1]-OCV_Data[ocvindex]);
float soc = (SOC[ocvindex+1] - SOC[ocvindex])*m + SOC[ocvindex];
return soc;
if (now - last_current_time >= SOC_ESTIMATION_NO_CURRENT_TIME ||
last_current_time == 0) {
// Assume we're measuring OCV if there's been no current for a while (or
// we've just turned on the battery).
current_soc = soc_for_ocv(min_voltage);
} else {
// Otherwise, use the current counter to update SoC
float as_delta = shunt_data.current_counter - mAs_before_current;
current_soc =
soc_before_current + as_delta / SOC_ESTIMATION_BATTERY_CAPACITY;
}
}
}
float soc_for_ocv(uint16_t ocv) {
size_t i = 0;
size_t array_length = sizeof(OCV_SOC_PAIRS) / sizeof(*OCV_SOC_PAIRS);
// Find the index of the first element with OCV greater than the target OCV
while (i < array_length && OCV_SOC_PAIRS[i].ocv <= ocv) {
i++;
}
// If the target OCV is lower than the smallest OCV in the array, return the
// first SOC value
if (i == 0) {
return OCV_SOC_PAIRS[0].soc;
}
// If the target OCV is higher than the largest OCV in the array, return the
// last SOC value
if (i == array_length) {
return OCV_SOC_PAIRS[array_length - 1].soc;
}
// Perform linear interpolation
uint16_t ocv1 = OCV_SOC_PAIRS[i - 1].ocv;
uint16_t ocv2 = OCV_SOC_PAIRS[i].ocv;
float soc1 = OCV_SOC_PAIRS[i - 1].soc;
float soc2 = OCV_SOC_PAIRS[i].soc;
float slope = (soc2 - soc1) / (ocv2 - ocv1);
float interpolated_soc = soc1 + slope * (ocv - ocv1);
return interpolated_soc;
}