Initial commit
This commit is contained in:
		@ -0,0 +1,4 @@
 | 
			
		||||
CMSIS DSP_Lib example arm_linear_interp_example for
 | 
			
		||||
  Cortex-M0, Cortex-M3, Cortex-M4 with FPU and Cortex-M7 with single precision FPU.
 | 
			
		||||
 | 
			
		||||
The example is configured for uVision Simulator.
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@ -0,0 +1,204 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
* $Date:         17. January 2013
 | 
			
		||||
* $Revision:     V1.4.0
 | 
			
		||||
*
 | 
			
		||||
* Project:       CMSIS DSP Library
 | 
			
		||||
* Title:         arm_linear_interp_example_f32.c
 | 
			
		||||
*
 | 
			
		||||
* Description:   Example code demonstrating usage of sin function
 | 
			
		||||
*                and uses linear interpolation to get higher precision
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M3
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of ARM LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
 * -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @ingroup groupExamples
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @defgroup LinearInterpExample Linear Interpolate Example
 | 
			
		||||
 *
 | 
			
		||||
 * <b> CMSIS DSP Software Library -- Linear Interpolate Example  </b>
 | 
			
		||||
 *
 | 
			
		||||
 * <b> Description </b>
 | 
			
		||||
 * This example demonstrates usage of linear interpolate modules and fast math modules.
 | 
			
		||||
 * Method 1 uses fast math sine function to calculate sine values using cubic interpolation and method 2 uses
 | 
			
		||||
 * linear interpolation function and results are compared to reference output.
 | 
			
		||||
 * Example shows linear interpolation function can be used to get higher precision compared to fast math sin calculation.
 | 
			
		||||
 *
 | 
			
		||||
 * \par Block Diagram:
 | 
			
		||||
 * \par
 | 
			
		||||
 * \image html linearInterpExampleMethod1.gif "Method 1: Sine caluclation using fast math"
 | 
			
		||||
 * \par
 | 
			
		||||
 * \image html linearInterpExampleMethod2.gif "Method 2: Sine caluclation using interpolation function"
 | 
			
		||||
 *
 | 
			
		||||
 * \par Variables Description:
 | 
			
		||||
 * \par
 | 
			
		||||
 * \li \c testInputSin_f32         points to the input values for sine calculation
 | 
			
		||||
 * \li \c testRefSinOutput32_f32   points to the reference values caculated from sin() matlab function
 | 
			
		||||
 * \li \c testOutput               points to output buffer calculation from cubic interpolation
 | 
			
		||||
 * \li \c testLinIntOutput         points to output buffer calculation from linear interpolation
 | 
			
		||||
 * \li \c snr1                     Signal to noise ratio for reference and cubic interpolation output
 | 
			
		||||
 * \li \c snr2                     Signal to noise ratio for reference and linear interpolation output
 | 
			
		||||
 *
 | 
			
		||||
 * \par CMSIS DSP Software Library Functions Used:
 | 
			
		||||
 * \par
 | 
			
		||||
 * - arm_sin_f32()
 | 
			
		||||
 * - arm_linear_interp_f32()
 | 
			
		||||
 *
 | 
			
		||||
 * <b> Refer  </b>
 | 
			
		||||
 * \link arm_linear_interp_example_f32.c \endlink
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/** \example arm_linear_interp_example_f32.c
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
#include "math_helper.h"
 | 
			
		||||
 | 
			
		||||
#define SNR_THRESHOLD           90
 | 
			
		||||
#define TEST_LENGTH_SAMPLES     10
 | 
			
		||||
#define XSPACING               (0.00005f)
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Test input data for F32 SIN function
 | 
			
		||||
* Generated by the MATLAB rand() function
 | 
			
		||||
* randn('state', 0)
 | 
			
		||||
* xi = (((1/4.18318581819710)* randn(blockSize, 1) * 2* pi));
 | 
			
		||||
* --------------------------------------------------------------------*/
 | 
			
		||||
float32_t testInputSin_f32[TEST_LENGTH_SAMPLES] =
 | 
			
		||||
{
 | 
			
		||||
   -0.649716504673081170, -2.501723745497831200,
 | 
			
		||||
    0.188250329003310100,  0.432092748487532540,
 | 
			
		||||
   -1.722010988459680800,  1.788766476323060600,
 | 
			
		||||
    1.786136060975809500, -0.056525543169408797,
 | 
			
		||||
    0.491596272728153760,  0.262309671126153390
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
*  Reference out of SIN F32 function for Block Size = 10
 | 
			
		||||
*  Calculated from sin(testInputSin_f32)
 | 
			
		||||
*------------------------------------------------------------------------------*/
 | 
			
		||||
float32_t testRefSinOutput32_f32[TEST_LENGTH_SAMPLES] =
 | 
			
		||||
{
 | 
			
		||||
   -0.604960695383043530, -0.597090287967934840,
 | 
			
		||||
    0.187140422442966500,  0.418772124875992690,
 | 
			
		||||
   -0.988588831792106880,  0.976338412038794010,
 | 
			
		||||
    0.976903856413481100, -0.056495446835214236,
 | 
			
		||||
    0.472033731854734240,  0.259311907228582830
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
*  Method 1: Test out Buffer Calculated from Cubic Interpolation
 | 
			
		||||
*------------------------------------------------------------------------------*/
 | 
			
		||||
float32_t testOutput[TEST_LENGTH_SAMPLES];
 | 
			
		||||
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
*  Method 2: Test out buffer Calculated from Linear Interpolation
 | 
			
		||||
*------------------------------------------------------------------------------*/
 | 
			
		||||
float32_t testLinIntOutput[TEST_LENGTH_SAMPLES];
 | 
			
		||||
 | 
			
		||||
/*------------------------------------------------------------------------------
 | 
			
		||||
*  External table used for linear interpolation
 | 
			
		||||
*------------------------------------------------------------------------------*/
 | 
			
		||||
extern float arm_linear_interep_table[188495];
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Global Variables for caluclating SNR's for Method1 & Method 2
 | 
			
		||||
* ------------------------------------------------------------------- */
 | 
			
		||||
float32_t snr1;
 | 
			
		||||
float32_t snr2;
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------------
 | 
			
		||||
* Calculation of Sine values from Cubic Interpolation and Linear interpolation
 | 
			
		||||
* ---------------------------------------------------------------------------- */
 | 
			
		||||
int32_t main(void)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
  arm_status status;
 | 
			
		||||
 | 
			
		||||
  arm_linear_interp_instance_f32 S = {188495, -3.141592653589793238, XSPACING, &arm_linear_interep_table[0]};
 | 
			
		||||
 | 
			
		||||
  /*------------------------------------------------------------------------------
 | 
			
		||||
  *  Method 1: Test out Calculated from Cubic Interpolation
 | 
			
		||||
  *------------------------------------------------------------------------------*/
 | 
			
		||||
  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
 | 
			
		||||
  {
 | 
			
		||||
    testOutput[i] = arm_sin_f32(testInputSin_f32[i]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*------------------------------------------------------------------------------
 | 
			
		||||
  *  Method 2: Test out Calculated from Cubic Interpolation and Linear interpolation
 | 
			
		||||
  *------------------------------------------------------------------------------*/
 | 
			
		||||
 | 
			
		||||
  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
 | 
			
		||||
  {
 | 
			
		||||
      testLinIntOutput[i] = arm_linear_interp_f32(&S, testInputSin_f32[i]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /*------------------------------------------------------------------------------
 | 
			
		||||
  *            SNR calculation for method 1
 | 
			
		||||
  *------------------------------------------------------------------------------*/
 | 
			
		||||
  snr1 = arm_snr_f32(testRefSinOutput32_f32, testOutput, 2);
 | 
			
		||||
 | 
			
		||||
  /*------------------------------------------------------------------------------
 | 
			
		||||
  *            SNR calculation for method 2
 | 
			
		||||
  *------------------------------------------------------------------------------*/
 | 
			
		||||
  snr2 = arm_snr_f32(testRefSinOutput32_f32, testLinIntOutput, 2);
 | 
			
		||||
 | 
			
		||||
  /*------------------------------------------------------------------------------
 | 
			
		||||
  *            Initialise status depending on SNR calculations
 | 
			
		||||
  *------------------------------------------------------------------------------*/
 | 
			
		||||
  if ( snr2 > snr1)
 | 
			
		||||
  {
 | 
			
		||||
    status = ARM_MATH_SUCCESS;
 | 
			
		||||
  }
 | 
			
		||||
  else
 | 
			
		||||
  {
 | 
			
		||||
    status = ARM_MATH_TEST_FAILURE;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ----------------------------------------------------------------------
 | 
			
		||||
  ** Loop here if the signals fail the PASS check.
 | 
			
		||||
  ** This denotes a test failure
 | 
			
		||||
  ** ------------------------------------------------------------------- */
 | 
			
		||||
  if ( status != ARM_MATH_SUCCESS)
 | 
			
		||||
  {
 | 
			
		||||
    while (1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  while (1);                             /* main function does not return */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 /** \endlink */
 | 
			
		||||
@ -0,0 +1,466 @@
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
 | 
			
		||||
*
 | 
			
		||||
* $Date:        17. January 2013
 | 
			
		||||
* $Revision: 	V1.4.0  b
 | 
			
		||||
*
 | 
			
		||||
* Project: 	    CMSIS DSP Library
 | 
			
		||||
*
 | 
			
		||||
* Title:	    math_helper.c
 | 
			
		||||
*
 | 
			
		||||
* Description:	Definition of all helper functions required.
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M3
 | 
			
		||||
*
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of ARM LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
*		Include standard header files
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
#include<math.h>
 | 
			
		||||
 | 
			
		||||
/* ----------------------------------------------------------------------
 | 
			
		||||
*		Include project header files
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
#include "math_helper.h"
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Caluclation of SNR
 | 
			
		||||
 * @param[in]  pRef 	Pointer to the reference buffer
 | 
			
		||||
 * @param[in]  pTest	Pointer to the test buffer
 | 
			
		||||
 * @param[in]  buffSize	total number of samples
 | 
			
		||||
 * @return     SNR
 | 
			
		||||
 * The function Caluclates signal to noise ratio for the reference output
 | 
			
		||||
 * and test output
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
float arm_snr_f32(float *pRef, float *pTest, uint32_t buffSize)
 | 
			
		||||
{
 | 
			
		||||
  float EnergySignal = 0.0, EnergyError = 0.0;
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
  float SNR;
 | 
			
		||||
  int temp;
 | 
			
		||||
  int *test;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < buffSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
 	  /* Checking for a NAN value in pRef array */
 | 
			
		||||
	  test =   (int *)(&pRef[i]);
 | 
			
		||||
      temp =  *test;
 | 
			
		||||
 | 
			
		||||
	  if (temp == 0x7FC00000)
 | 
			
		||||
	  {
 | 
			
		||||
	  		return(0);
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	  /* Checking for a NAN value in pTest array */
 | 
			
		||||
	  test =   (int *)(&pTest[i]);
 | 
			
		||||
      temp =  *test;
 | 
			
		||||
 | 
			
		||||
	  if (temp == 0x7FC00000)
 | 
			
		||||
	  {
 | 
			
		||||
	  		return(0);
 | 
			
		||||
	  }
 | 
			
		||||
      EnergySignal += pRef[i] * pRef[i];
 | 
			
		||||
      EnergyError += (pRef[i] - pTest[i]) * (pRef[i] - pTest[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
	/* Checking for a NAN value in EnergyError */
 | 
			
		||||
	test =   (int *)(&EnergyError);
 | 
			
		||||
    temp =  *test;
 | 
			
		||||
 | 
			
		||||
    if (temp == 0x7FC00000)
 | 
			
		||||
    {
 | 
			
		||||
  		return(0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  SNR = 10 * log10 (EnergySignal / EnergyError);
 | 
			
		||||
 | 
			
		||||
  return (SNR);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Provide guard bits for Input buffer
 | 
			
		||||
 * @param[in,out]  input_buf   Pointer to input buffer
 | 
			
		||||
 * @param[in]       blockSize  block Size
 | 
			
		||||
 * @param[in]       guard_bits guard bits
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function Provides the guard bits for the buffer
 | 
			
		||||
 * to avoid overflow
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_provide_guard_bits_q15 (q15_t * input_buf, uint32_t blockSize,
 | 
			
		||||
                            uint32_t guard_bits)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < blockSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
      input_buf[i] = input_buf[i] >> guard_bits;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts float to fixed in q12.20 format
 | 
			
		||||
 * @param[in]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[out] pOut        pointer to outputbuffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the input buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point(q12.20) values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_float_to_q12_20(float *pIn, q31_t * pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
	  /* 1048576.0f corresponds to pow(2, 20) */
 | 
			
		||||
      pOut[i] = (q31_t) (pIn[i] * 1048576.0f);
 | 
			
		||||
 | 
			
		||||
      pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
 | 
			
		||||
 | 
			
		||||
      if (pIn[i] == (float) 1.0)
 | 
			
		||||
        {
 | 
			
		||||
          pOut[i] = 0x000FFFFF;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Compare MATLAB Reference Output and ARM Test output
 | 
			
		||||
 * @param[in]  pIn         Pointer to Ref buffer
 | 
			
		||||
 * @param[in]  pOut        Pointer to Test buffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the buffer
 | 
			
		||||
 * @return maximum difference
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
uint32_t arm_compare_fixed_q15(q15_t *pIn, q15_t *pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
  int32_t diff, diffCrnt = 0;
 | 
			
		||||
  uint32_t maxDiff = 0;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
  {
 | 
			
		||||
  	diff = pIn[i] - pOut[i];
 | 
			
		||||
  	diffCrnt = (diff > 0) ? diff : -diff;
 | 
			
		||||
 | 
			
		||||
	if (diffCrnt > maxDiff)
 | 
			
		||||
	{
 | 
			
		||||
		maxDiff = diffCrnt;
 | 
			
		||||
	}
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(maxDiff);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Compare MATLAB Reference Output and ARM Test output
 | 
			
		||||
 * @param[in]  pIn         Pointer to Ref buffer
 | 
			
		||||
 * @param[in]  pOut        Pointer to Test buffer
 | 
			
		||||
 * @param[in]  numSamples number of samples in the buffer
 | 
			
		||||
 * @return maximum difference
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
uint32_t arm_compare_fixed_q31(q31_t *pIn, q31_t * pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
  int32_t diff, diffCrnt = 0;
 | 
			
		||||
  uint32_t maxDiff = 0;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
  {
 | 
			
		||||
  	diff = pIn[i] - pOut[i];
 | 
			
		||||
  	diffCrnt = (diff > 0) ? diff : -diff;
 | 
			
		||||
 | 
			
		||||
	if (diffCrnt > maxDiff)
 | 
			
		||||
	{
 | 
			
		||||
		maxDiff = diffCrnt;
 | 
			
		||||
	}
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(maxDiff);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Provide guard bits for Input buffer
 | 
			
		||||
 * @param[in,out]  input_buf   Pointer to input buffer
 | 
			
		||||
 * @param[in]       blockSize  block Size
 | 
			
		||||
 * @param[in]       guard_bits guard bits
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function Provides the guard bits for the buffer
 | 
			
		||||
 * to avoid overflow
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_provide_guard_bits_q31 (q31_t * input_buf,
 | 
			
		||||
								 uint32_t blockSize,
 | 
			
		||||
                                 uint32_t guard_bits)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < blockSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
      input_buf[i] = input_buf[i] >> guard_bits;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Provide guard bits for Input buffer
 | 
			
		||||
 * @param[in,out]  input_buf   Pointer to input buffer
 | 
			
		||||
 * @param[in]       blockSize  block Size
 | 
			
		||||
 * @param[in]       guard_bits guard bits
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function Provides the guard bits for the buffer
 | 
			
		||||
 * to avoid overflow
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_provide_guard_bits_q7 (q7_t * input_buf,
 | 
			
		||||
								uint32_t blockSize,
 | 
			
		||||
                                uint32_t guard_bits)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < blockSize; i++)
 | 
			
		||||
    {
 | 
			
		||||
      input_buf[i] = input_buf[i] >> guard_bits;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Caluclates number of guard bits
 | 
			
		||||
 * @param[in]  num_adds 	number of additions
 | 
			
		||||
 * @return guard bits
 | 
			
		||||
 * The function Caluclates the number of guard bits
 | 
			
		||||
 * depending on the numtaps
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
uint32_t arm_calc_guard_bits (uint32_t num_adds)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i = 1, j = 0;
 | 
			
		||||
 | 
			
		||||
  if (num_adds == 1)
 | 
			
		||||
    {
 | 
			
		||||
      return (0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  while (i < num_adds)
 | 
			
		||||
    {
 | 
			
		||||
      i = i * 2;
 | 
			
		||||
      j++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  return (j);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Apply guard bits to buffer
 | 
			
		||||
 * @param[in,out]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[in]      numSamples  number of samples in the input buffer
 | 
			
		||||
 * @param[in]      guard_bits  guard bits
 | 
			
		||||
 * @return none
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_apply_guard_bits (float32_t *pIn,
 | 
			
		||||
						   uint32_t numSamples,
 | 
			
		||||
						   uint32_t guard_bits)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
      pIn[i] = pIn[i] * arm_calc_2pow(guard_bits);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Calculates pow(2, numShifts)
 | 
			
		||||
 * @param[in]  numShifts 	number of shifts
 | 
			
		||||
 * @return pow(2, numShifts)
 | 
			
		||||
 */
 | 
			
		||||
uint32_t arm_calc_2pow(uint32_t numShifts)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
  uint32_t i, val = 1;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numShifts; i++)
 | 
			
		||||
    {
 | 
			
		||||
      val = val * 2;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  return(val);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts float to fixed q14
 | 
			
		||||
 * @param[in]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[out] pOut        pointer to output buffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_float_to_q14 (float *pIn, q15_t *pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
	  /* 16384.0f corresponds to pow(2, 14) */
 | 
			
		||||
      pOut[i] = (q15_t) (pIn[i] * 16384.0f);
 | 
			
		||||
 | 
			
		||||
      pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
 | 
			
		||||
 | 
			
		||||
      if (pIn[i] == (float) 2.0)
 | 
			
		||||
        {
 | 
			
		||||
          pOut[i] = 0x7FFF;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts float to fixed q30 format
 | 
			
		||||
 * @param[in]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[out] pOut        pointer to output buffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_float_to_q30 (float *pIn, q31_t * pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
	  /* 1073741824.0f corresponds to pow(2, 30) */
 | 
			
		||||
      pOut[i] = (q31_t) (pIn[i] * 1073741824.0f);
 | 
			
		||||
 | 
			
		||||
      pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
 | 
			
		||||
 | 
			
		||||
      if (pIn[i] == (float) 2.0)
 | 
			
		||||
        {
 | 
			
		||||
          pOut[i] = 0x7FFFFFFF;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts float to fixed q30 format
 | 
			
		||||
 * @param[in]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[out] pOut        pointer to output buffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_float_to_q29 (float *pIn, q31_t *pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
	  /* 1073741824.0f corresponds to pow(2, 30) */
 | 
			
		||||
      pOut[i] = (q31_t) (pIn[i] * 536870912.0f);
 | 
			
		||||
 | 
			
		||||
      pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
 | 
			
		||||
 | 
			
		||||
      if (pIn[i] == (float) 4.0)
 | 
			
		||||
        {
 | 
			
		||||
          pOut[i] = 0x7FFFFFFF;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Converts float to fixed q28 format
 | 
			
		||||
 * @param[in]  pIn         pointer to input buffer
 | 
			
		||||
 * @param[out] pOut        pointer to output buffer
 | 
			
		||||
 * @param[in]  numSamples  number of samples in the buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_float_to_q28 (float *pIn, q31_t *pOut, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
	/* 268435456.0f corresponds to pow(2, 28) */
 | 
			
		||||
      pOut[i] = (q31_t) (pIn[i] * 268435456.0f);
 | 
			
		||||
 | 
			
		||||
      pOut[i] += pIn[i] > 0 ? 0.5 : -0.5;
 | 
			
		||||
 | 
			
		||||
      if (pIn[i] == (float) 8.0)
 | 
			
		||||
        {
 | 
			
		||||
          pOut[i] = 0x7FFFFFFF;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * @brief  Clip the float values to +/- 1
 | 
			
		||||
 * @param[in,out]  pIn           input buffer
 | 
			
		||||
 * @param[in]      numSamples    number of samples in the buffer
 | 
			
		||||
 * @return none
 | 
			
		||||
 * The function converts floating point values to fixed point values
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
void arm_clip_f32 (float *pIn, uint32_t numSamples)
 | 
			
		||||
{
 | 
			
		||||
  uint32_t i;
 | 
			
		||||
 | 
			
		||||
  for (i = 0; i < numSamples; i++)
 | 
			
		||||
    {
 | 
			
		||||
      if (pIn[i] > 1.0f)
 | 
			
		||||
	  {
 | 
			
		||||
	    pIn[i] = 1.0;
 | 
			
		||||
	  }
 | 
			
		||||
	  else if ( pIn[i] < -1.0f)
 | 
			
		||||
	  {
 | 
			
		||||
	    pIn[i] = -1.0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -0,0 +1,63 @@
 | 
			
		||||
/* ----------------------------------------------------------------------   
 | 
			
		||||
* Copyright (C) 2010-2013 ARM Limited. All rights reserved.   
 | 
			
		||||
*   
 | 
			
		||||
* $Date:        17. January 2013  
 | 
			
		||||
* $Revision: 	V1.4.0   
 | 
			
		||||
*  
 | 
			
		||||
* Project: 	    CMSIS DSP Library 
 | 
			
		||||
*
 | 
			
		||||
* Title:	    math_helper.h
 | 
			
		||||
* 
 | 
			
		||||
* Description:	Prototypes of all helper functions required.  
 | 
			
		||||
*
 | 
			
		||||
* Target Processor: Cortex-M4/Cortex-M3
 | 
			
		||||
*  
 | 
			
		||||
* Redistribution and use in source and binary forms, with or without 
 | 
			
		||||
* modification, are permitted provided that the following conditions
 | 
			
		||||
* are met:
 | 
			
		||||
*   - Redistributions of source code must retain the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer.
 | 
			
		||||
*   - Redistributions in binary form must reproduce the above copyright
 | 
			
		||||
*     notice, this list of conditions and the following disclaimer in
 | 
			
		||||
*     the documentation and/or other materials provided with the 
 | 
			
		||||
*     distribution.
 | 
			
		||||
*   - Neither the name of ARM LIMITED nor the names of its contributors
 | 
			
		||||
*     may be used to endorse or promote products derived from this
 | 
			
		||||
*     software without specific prior written permission.
 | 
			
		||||
*
 | 
			
		||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
			
		||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
			
		||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 | 
			
		||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
 | 
			
		||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | 
			
		||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | 
			
		||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | 
			
		||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
			
		||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
			
		||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | 
			
		||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
			
		||||
* POSSIBILITY OF SUCH DAMAGE.  
 | 
			
		||||
* -------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#include "arm_math.h"
 | 
			
		||||
 | 
			
		||||
#ifndef MATH_HELPER_H
 | 
			
		||||
#define MATH_HELPER_H
 | 
			
		||||
 | 
			
		||||
float arm_snr_f32(float *pRef, float *pTest,  uint32_t buffSize);  
 | 
			
		||||
void arm_float_to_q12_20(float *pIn, q31_t * pOut, uint32_t numSamples);
 | 
			
		||||
void arm_provide_guard_bits_q15(q15_t *input_buf, uint32_t blockSize, uint32_t guard_bits);
 | 
			
		||||
void arm_provide_guard_bits_q31(q31_t *input_buf, uint32_t blockSize, uint32_t guard_bits);
 | 
			
		||||
void arm_float_to_q14(float *pIn, q15_t *pOut, uint32_t numSamples);
 | 
			
		||||
void arm_float_to_q29(float *pIn, q31_t *pOut, uint32_t numSamples);
 | 
			
		||||
void arm_float_to_q28(float *pIn, q31_t *pOut, uint32_t numSamples);
 | 
			
		||||
void arm_float_to_q30(float *pIn, q31_t *pOut, uint32_t numSamples);
 | 
			
		||||
void arm_clip_f32(float *pIn, uint32_t numSamples);
 | 
			
		||||
uint32_t arm_calc_guard_bits(uint32_t num_adds);
 | 
			
		||||
void arm_apply_guard_bits (float32_t * pIn, uint32_t numSamples, uint32_t guard_bits);
 | 
			
		||||
uint32_t arm_compare_fixed_q15(q15_t *pIn, q15_t * pOut, uint32_t numSamples);
 | 
			
		||||
uint32_t arm_compare_fixed_q31(q31_t *pIn, q31_t *pOut, uint32_t numSamples);
 | 
			
		||||
uint32_t arm_calc_2pow(uint32_t guard_bits);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user