7631 lines
317 KiB
C
7631 lines
317 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f3xx_hal_adc_ex.c
|
|
* @author MCD Application Team
|
|
* @brief This file provides firmware functions to manage the following
|
|
* functionalities of the Analog to Digital Convertor (ADC)
|
|
* peripheral:
|
|
* + Peripheral Control functions
|
|
* Other functions (generic functions) are available in file
|
|
* "stm32f3xx_hal_adc.c".
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2016 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
[..]
|
|
(@) Sections "ADC peripheral features" and "How to use this driver" are
|
|
available in file of generic functions "stm32f3xx_hal_adc.c".
|
|
[..]
|
|
@endverbatim
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f3xx_hal.h"
|
|
|
|
/** @addtogroup STM32F3xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup ADCEx ADCEx
|
|
* @brief ADC Extended HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_ADC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @defgroup ADCEx_Private_Constants ADCEx Private Constants
|
|
* @{
|
|
*/
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/* Fixed timeout values for ADC calibration, enable settling time, disable */
|
|
/* settling time. */
|
|
/* Values defined to be higher than worst cases: low clock frequency, */
|
|
/* maximum prescalers. */
|
|
/* Ex of profile low frequency : Clock source at 0.5 MHz, ADC clock */
|
|
/* prescaler 256 (devices STM32F30xx), sampling time 7.5 ADC clock cycles, */
|
|
/* resolution 12 bits. */
|
|
/* Unit: ms */
|
|
#define ADC_CALIBRATION_TIMEOUT ( 10U)
|
|
#define ADC_ENABLE_TIMEOUT ( 2U)
|
|
#define ADC_DISABLE_TIMEOUT ( 2U)
|
|
#define ADC_STOP_CONVERSION_TIMEOUT ( 11U)
|
|
|
|
/* Timeout to wait for current conversion on going to be completed. */
|
|
/* Timeout fixed to worst case, for 1 channel. */
|
|
/* - maximum sampling time (601.5 adc_clk) */
|
|
/* - ADC resolution (Tsar 12 bits= 12.5 adc_clk) */
|
|
/* - ADC clock (from PLL with prescaler 256 (devices STM32F30xx)) */
|
|
/* Unit: cycles of CPU clock. */
|
|
#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES ( 156928U)
|
|
|
|
/* Delay for ADC stabilization time (ADC voltage regulator start-up time) */
|
|
/* Maximum delay is 10us (refer to device datasheet, param. TADCVREG_STUP). */
|
|
/* Unit: us */
|
|
#define ADC_STAB_DELAY_US ( 10U)
|
|
|
|
/* Delay for temperature sensor stabilization time. */
|
|
/* Maximum delay is 10us (refer device datasheet, parameter tSTART). */
|
|
/* Unit: us */
|
|
#define ADC_TEMPSENSOR_DELAY_US ( 10U)
|
|
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/* Timeout values for ADC enable and disable settling time. */
|
|
/* Values defined to be higher than worst cases: low clocks freq, */
|
|
/* maximum prescaler. */
|
|
/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
|
|
/* prescaler 4U, sampling time 12.5 ADC clock cycles, resolution 12 bits. */
|
|
/* Unit: ms */
|
|
#define ADC_ENABLE_TIMEOUT ( 2U)
|
|
#define ADC_DISABLE_TIMEOUT ( 2U)
|
|
|
|
/* Delay for ADC calibration: */
|
|
/* Hardware prerequisite before starting a calibration: the ADC must have */
|
|
/* been in power-on state for at least two ADC clock cycles. */
|
|
/* Unit: ADC clock cycles */
|
|
#define ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES ( 2U)
|
|
|
|
/* Timeout value for ADC calibration */
|
|
/* Value defined to be higher than worst cases: low clocks freq, */
|
|
/* maximum prescaler. */
|
|
/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
|
|
/* prescaler 4U, sampling time 12.5 ADC clock cycles, resolution 12 bits. */
|
|
/* Unit: ms */
|
|
#define ADC_CALIBRATION_TIMEOUT ( 10U)
|
|
|
|
/* Delay for ADC stabilization time. */
|
|
/* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */
|
|
/* Unit: us */
|
|
#define ADC_STAB_DELAY_US ( 1U)
|
|
|
|
/* Delay for temperature sensor stabilization time. */
|
|
/* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */
|
|
/* Unit: us */
|
|
#define ADC_TEMPSENSOR_DELAY_US ( 10U)
|
|
|
|
/* Maximum number of CPU cycles corresponding to 1 ADC cycle */
|
|
/* Value fixed to worst case: clock prescalers slowing down ADC clock to */
|
|
/* minimum frequency */
|
|
/* - AHB prescaler: 16 */
|
|
/* - ADC prescaler: 8 */
|
|
/* Unit: cycles of CPU clock. */
|
|
#define ADC_CYCLE_WORST_CASE_CPU_CYCLES ( 128U)
|
|
|
|
/* ADC conversion cycles (unit: ADC clock cycles) */
|
|
/* (selected sampling time + conversion time of 12.5 ADC clock cycles, with */
|
|
/* resolution 12 bits) */
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_1CYCLE5 ( 14U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_7CYCLES5 ( 20U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_13CYCLES5 ( 26U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_28CYCLES5 ( 41U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_41CYCLES5 ( 54U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_55CYCLES5 ( 68U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_71CYCLES5 ( 84U)
|
|
#define ADC_CONVERSIONCLOCKCYCLES_SAMPLETIME_239CYCLES5 (252U)
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc);
|
|
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc);
|
|
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc, uint32_t ConversionGroup);
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc);
|
|
static HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef* hadc);
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
|
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
|
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
|
|
|
|
/* Exported functions --------------------------------------------------------*/
|
|
|
|
/** @defgroup ADCEx_Exported_Functions ADCEx Exported Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup ADCEx_Exported_Functions_Group1 ADCEx Initialization and de-initialization functions
|
|
* @brief ADC Extended Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initialize and configure the ADC.
|
|
(+) De-initialize the ADC.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Initializes the ADC peripheral and regular group according to
|
|
* parameters specified in structure "ADC_InitTypeDef".
|
|
* @note As prerequisite, ADC clock must be configured at RCC top level
|
|
* depending on possible clock sources: AHB clock or PLL clock.
|
|
* See commented example code below that can be copied and uncommented
|
|
* into HAL_ADC_MspInit().
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
|
|
* coming from ADC state reset. Following calls to this function can
|
|
* be used to reconfigure some parameters of ADC_InitTypeDef
|
|
* structure on the fly, without modifying MSP configuration. If ADC
|
|
* MSP has to be modified again, HAL_ADC_DeInit() must be called
|
|
* before HAL_ADC_Init().
|
|
* The setting of these parameters is conditioned by ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_InitTypeDef".
|
|
* @note This function configures the ADC within 2 scopes: scope of entire
|
|
* ADC and scope of regular group. For parameters details, see comments
|
|
* of structure "ADC_InitTypeDef".
|
|
* @note For devices with several ADCs: parameters related to common ADC
|
|
* registers (ADC clock mode) are set only if all ADCs sharing the
|
|
* same common group are disabled.
|
|
* If this is not the case, these common parameters setting are
|
|
* bypassed without error reporting: it can be the intended behaviour in
|
|
* case of update of a parameter of ADC_InitTypeDef on the fly,
|
|
* without disabling the other ADCs sharing the same common group.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
ADC_HandleTypeDef tmphadcSharingSameCommonRegister;
|
|
uint32_t tmpCFGR = 0U;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Check ADC handle */
|
|
if(hadc == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
|
|
assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
|
|
assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
|
|
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
|
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
|
assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
|
|
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
|
|
assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
|
|
|
|
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
|
|
{
|
|
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
|
|
if(hadc->Init.DiscontinuousConvMode != DISABLE)
|
|
{
|
|
assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
|
|
}
|
|
}
|
|
|
|
/* Configuration of ADC core parameters and ADC MSP related parameters */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
|
{
|
|
/* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */
|
|
/* at RCC top level. */
|
|
/* Refer to header of this file for more details on clock enabling */
|
|
/* procedure. */
|
|
|
|
/* Actions performed only if ADC is coming from state reset: */
|
|
/* - Initialization of ADC MSP */
|
|
/* - ADC voltage regulator enable */
|
|
if (hadc->State == HAL_ADC_STATE_RESET)
|
|
{
|
|
/* Initialize ADC error code */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Initialize HAL ADC API internal variables */
|
|
hadc->InjectionConfig.ChannelCount = 0U;
|
|
hadc->InjectionConfig.ContextQueue = 0U;
|
|
|
|
/* Allocate lock resource and initialize it */
|
|
hadc->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
/* Init the ADC Callback settings */
|
|
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
|
|
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
|
|
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
|
|
hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
|
|
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
|
|
|
|
if (hadc->MspInitCallback == NULL)
|
|
{
|
|
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
hadc->MspInitCallback(hadc);
|
|
#else
|
|
/* Init the low level hardware */
|
|
HAL_ADC_MspInit(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Enable voltage regulator (if disabled at this step) */
|
|
if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN_0))
|
|
{
|
|
/* Note: The software must wait for the startup time of the ADC */
|
|
/* voltage regulator before launching a calibration or */
|
|
/* enabling the ADC. This temporization must be implemented by */
|
|
/* software and is equal to 10 us in the worst case */
|
|
/* process/temperature/power supply. */
|
|
|
|
/* Disable the ADC (if not already disabled) */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
/* Configuration of ADC parameters if previous preliminary actions */
|
|
/* are correctly completed. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
|
|
(tmp_hal_status == HAL_OK) )
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Set the intermediate state before moving the ADC voltage */
|
|
/* regulator to state enable. */
|
|
CLEAR_BIT(hadc->Instance->CR, (ADC_CR_ADVREGEN_1 | ADC_CR_ADVREGEN_0));
|
|
/* Set ADVREGEN bits to 0x01U */
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN_0);
|
|
|
|
/* Delay for ADC stabilization time. */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Verification that ADC voltage regulator is correctly enabled, whether */
|
|
/* or not ADC is coming from state reset (if any potential problem of */
|
|
/* clocking, voltage regulator would not be enabled). */
|
|
if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN_0) ||
|
|
HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADVREGEN_1) )
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
|
/* correctly completed and if there is no conversion on going on regular */
|
|
/* group (ADC may already be enabled at this point if HAL_ADC_Init() is */
|
|
/* called to update a parameter on the fly). */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
|
|
(tmp_hal_status == HAL_OK) &&
|
|
(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) )
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY,
|
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Configuration of common ADC parameters */
|
|
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* Set handle of the other ADC sharing the same common register */
|
|
ADC_COMMON_ADC_OTHER(hadc, &tmphadcSharingSameCommonRegister);
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - Multimode clock configuration */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
((tmphadcSharingSameCommonRegister.Instance == NULL) ||
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) ) )
|
|
{
|
|
/* Reset configuration of ADC common register CCR: */
|
|
/* - ADC clock mode: CKMODE */
|
|
/* Some parameters of this register are not reset, since they are set */
|
|
/* by other functions and must be kept in case of usage of this */
|
|
/* function on the fly (update of a parameter of ADC_InitTypeDef */
|
|
/* without needing to reconfigure all other ADC groups/channels */
|
|
/* parameters): */
|
|
/* - multimode related parameters: MDMA, DMACFG, DELAY, MULTI (set */
|
|
/* into HAL_ADCEx_MultiModeConfigChannel() ) */
|
|
/* - internal measurement paths: Vbat, temperature sensor, Vref */
|
|
/* (set into HAL_ADC_ConfigChannel() or */
|
|
/* HAL_ADCEx_InjectedConfigChannel() ) */
|
|
|
|
MODIFY_REG(tmpADC_Common->CCR ,
|
|
ADC_CCR_CKMODE ,
|
|
hadc->Init.ClockPrescaler );
|
|
}
|
|
|
|
|
|
/* Configuration of ADC: */
|
|
/* - resolution */
|
|
/* - data alignment */
|
|
/* - external trigger to start conversion */
|
|
/* - external trigger polarity */
|
|
/* - continuous conversion mode */
|
|
/* - overrun */
|
|
/* - discontinuous mode */
|
|
SET_BIT(tmpCFGR, ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
|
|
ADC_CFGR_OVERRUN(hadc->Init.Overrun) |
|
|
hadc->Init.DataAlign |
|
|
hadc->Init.Resolution );
|
|
|
|
/* Enable discontinuous mode only if continuous mode is disabled */
|
|
if (hadc->Init.DiscontinuousConvMode == ENABLE)
|
|
{
|
|
if (hadc->Init.ContinuousConvMode == DISABLE)
|
|
{
|
|
/* Enable the selected ADC regular discontinuous mode */
|
|
/* Set the number of channels to be converted in discontinuous mode */
|
|
SET_BIT(tmpCFGR, ADC_CFGR_DISCEN |
|
|
ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion) );
|
|
}
|
|
else
|
|
{
|
|
/* ADC regular group discontinuous was intended to be enabled, */
|
|
/* but ADC regular group modes continuous and sequencer discontinuous */
|
|
/* cannot be enabled simultaneously. */
|
|
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
}
|
|
|
|
/* Enable external trigger if trigger selection is different of software */
|
|
/* start. */
|
|
/* Note: This configuration keeps the hardware feature of parameter */
|
|
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
|
|
/* software start. */
|
|
if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
|
|
{
|
|
SET_BIT(tmpCFGR, ADC_CFGR_EXTSEL_SET(hadc, hadc->Init.ExternalTrigConv) |
|
|
hadc->Init.ExternalTrigConvEdge );
|
|
}
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular and injected groups: */
|
|
/* - DMA continuous request */
|
|
/* - LowPowerAutoWait feature */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
|
|
{
|
|
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AUTDLY |
|
|
ADC_CFGR_DMACFG );
|
|
|
|
SET_BIT(tmpCFGR, ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
|
|
ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) );
|
|
}
|
|
|
|
/* Update ADC configuration register with previous settings */
|
|
MODIFY_REG(hadc->Instance->CFGR,
|
|
ADC_CFGR_DISCNUM |
|
|
ADC_CFGR_DISCEN |
|
|
ADC_CFGR_CONT |
|
|
ADC_CFGR_OVRMOD |
|
|
ADC_CFGR_EXTSEL |
|
|
ADC_CFGR_EXTEN |
|
|
ADC_CFGR_ALIGN |
|
|
ADC_CFGR_RES ,
|
|
tmpCFGR );
|
|
|
|
|
|
/* Configuration of regular group sequencer: */
|
|
/* - if scan mode is disabled, regular channels sequence length is set to */
|
|
/* 0x00: 1 channel converted (channel on regular rank 1U) */
|
|
/* Parameter "NbrOfConversion" is discarded. */
|
|
/* Note: Scan mode is not present by hardware on this device, but */
|
|
/* emulated by software for alignment over all STM32 devices. */
|
|
/* - if scan mode is enabled, regular channels sequence length is set to */
|
|
/* parameter "NbrOfConversion" */
|
|
if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
|
|
{
|
|
/* Set number of ranks in regular group sequencer */
|
|
MODIFY_REG(hadc->Instance->SQR1 ,
|
|
ADC_SQR1_L ,
|
|
(hadc->Init.NbrOfConversion - (uint8_t)1U) );
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
|
|
}
|
|
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Set the ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Initializes the ADC peripheral and regular group according to
|
|
* parameters specified in structure "ADC_InitTypeDef".
|
|
* @note As prerequisite, ADC clock must be configured at RCC top level
|
|
* (clock source APB2).
|
|
* See commented example code below that can be copied and uncommented
|
|
* into HAL_ADC_MspInit().
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
|
|
* coming from ADC state reset. Following calls to this function can
|
|
* be used to reconfigure some parameters of ADC_InitTypeDef
|
|
* structure on the fly, without modifying MSP configuration. If ADC
|
|
* MSP has to be modified again, HAL_ADC_DeInit() must be called
|
|
* before HAL_ADC_Init().
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_InitTypeDef".
|
|
* @note This function configures the ADC within 2 scopes: scope of entire
|
|
* ADC and scope of regular group. For parameters details, see comments
|
|
* of structure "ADC_InitTypeDef".
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tmp_cr1 = 0U;
|
|
uint32_t tmp_cr2 = 0U;
|
|
uint32_t tmp_sqr1 = 0U;
|
|
|
|
/* Check ADC handle */
|
|
if(hadc == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
|
|
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
|
assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
|
|
|
|
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
|
|
{
|
|
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
|
|
if(hadc->Init.DiscontinuousConvMode != DISABLE)
|
|
{
|
|
assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
|
|
}
|
|
}
|
|
|
|
/* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */
|
|
/* at RCC top level. */
|
|
/* Refer to header of this file for more details on clock enabling */
|
|
/* procedure. */
|
|
|
|
/* Actions performed only if ADC is coming from state reset: */
|
|
/* - Initialization of ADC MSP */
|
|
if (hadc->State == HAL_ADC_STATE_RESET)
|
|
{
|
|
/* Initialize ADC error code */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Allocate lock resource and initialize it */
|
|
hadc->Lock = HAL_UNLOCKED;
|
|
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
/* Init the ADC Callback settings */
|
|
hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
|
|
hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
|
|
hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
|
|
hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
|
|
hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
|
|
|
|
if (hadc->MspInitCallback == NULL)
|
|
{
|
|
hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
hadc->MspInitCallback(hadc);
|
|
#else
|
|
/* Init the low level hardware */
|
|
HAL_ADC_MspInit(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
/* Note: In case of ADC already enabled, precaution to not launch an */
|
|
/* unwanted conversion while modifying register CR2 by writing 1 to */
|
|
/* bit ADON. */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
|
/* correctly completed. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
|
|
(tmp_hal_status == HAL_OK) )
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Set ADC parameters */
|
|
|
|
/* Configuration of ADC: */
|
|
/* - data alignment */
|
|
/* - external trigger to start conversion */
|
|
/* - external trigger polarity (always set to 1U, because needed for all */
|
|
/* triggers: external trigger of SW start) */
|
|
/* - continuous conversion mode */
|
|
/* Note: External trigger polarity (ADC_CR2_EXTTRIG) is set into */
|
|
/* HAL_ADC_Start_xxx functions because if set in this function, */
|
|
/* a conversion on injected group would start a conversion also on */
|
|
/* regular group after ADC enabling. */
|
|
tmp_cr2 |= (hadc->Init.DataAlign |
|
|
hadc->Init.ExternalTrigConv |
|
|
ADC_CR2_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) );
|
|
|
|
/* Configuration of ADC: */
|
|
/* - scan mode */
|
|
/* - discontinuous mode disable/enable */
|
|
/* - discontinuous mode number of conversions */
|
|
tmp_cr1 |= (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode));
|
|
|
|
/* Enable discontinuous mode only if continuous mode is disabled */
|
|
/* Note: If parameter "Init.ScanConvMode" is set to disable, parameter */
|
|
/* discontinuous is set anyway, but will have no effect on ADC HW. */
|
|
if (hadc->Init.DiscontinuousConvMode == ENABLE)
|
|
{
|
|
if (hadc->Init.ContinuousConvMode == DISABLE)
|
|
{
|
|
/* Enable the selected ADC regular discontinuous mode */
|
|
/* Set the number of channels to be converted in discontinuous mode */
|
|
tmp_cr1 |= (ADC_CR1_DISCEN |
|
|
ADC_CR1_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion) );
|
|
}
|
|
else
|
|
{
|
|
/* ADC regular group discontinuous was intended to be enabled, */
|
|
/* but ADC regular group modes continuous and sequencer discontinuous */
|
|
/* cannot be enabled simultaneously. */
|
|
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
}
|
|
|
|
/* Update ADC configuration register CR1 with previous settings */
|
|
MODIFY_REG(hadc->Instance->CR1,
|
|
ADC_CR1_SCAN |
|
|
ADC_CR1_DISCEN |
|
|
ADC_CR1_DISCNUM ,
|
|
tmp_cr1 );
|
|
|
|
/* Update ADC configuration register CR2 with previous settings */
|
|
MODIFY_REG(hadc->Instance->CR2,
|
|
ADC_CR2_ALIGN |
|
|
ADC_CR2_EXTSEL |
|
|
ADC_CR2_EXTTRIG |
|
|
ADC_CR2_CONT ,
|
|
tmp_cr2 );
|
|
|
|
/* Configuration of regular group sequencer: */
|
|
/* - if scan mode is disabled, regular channels sequence length is set to */
|
|
/* 0x00: 1 channel converted (channel on regular rank 1U) */
|
|
/* Parameter "NbrOfConversion" is discarded. */
|
|
/* Note: Scan mode is present by hardware on this device and, if */
|
|
/* disabled, discards automatically nb of conversions. Anyway, nb of */
|
|
/* conversions is forced to 0x00 for alignment over all STM32 devices. */
|
|
/* - if scan mode is enabled, regular channels sequence length is set to */
|
|
/* parameter "NbrOfConversion" */
|
|
if (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode) == ADC_SCAN_ENABLE)
|
|
{
|
|
tmp_sqr1 = ADC_SQR1_L_SHIFT(hadc->Init.NbrOfConversion);
|
|
}
|
|
|
|
MODIFY_REG(hadc->Instance->SQR1,
|
|
ADC_SQR1_L ,
|
|
tmp_sqr1 );
|
|
|
|
/* Check back that ADC registers have effectively been configured to */
|
|
/* ensure of no potential problem of ADC core IP clocking. */
|
|
/* Check through register CR2 (excluding bits set in other functions: */
|
|
/* execution control bits (ADON, JSWSTART, SWSTART), regular group bits */
|
|
/* (DMA), injected group bits (JEXTTRIG and JEXTSEL), channel internal */
|
|
/* measurement path bit (TSVREFE). */
|
|
if (READ_BIT(hadc->Instance->CR2, ~(ADC_CR2_ADON | ADC_CR2_DMA |
|
|
ADC_CR2_SWSTART | ADC_CR2_JSWSTART |
|
|
ADC_CR2_JEXTTRIG | ADC_CR2_JEXTSEL |
|
|
ADC_CR2_TSVREFE ))
|
|
== tmp_cr2)
|
|
{
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Set the ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Deinitialize the ADC peripheral registers to their default reset
|
|
* values, with deinitialization of the ADC MSP.
|
|
* @note For devices with several ADCs: reset of ADC common registers is done
|
|
* only if all ADCs sharing the same common group are disabled.
|
|
* If this is not the case, reset of these common parameters reset is
|
|
* bypassed without error reporting: it can be the intended behaviour in
|
|
* case of reset of a single ADC while the other ADCs sharing the same
|
|
* common group is still running.
|
|
* @note For devices with several ADCs: Global reset of all ADCs sharing a
|
|
* common group is possible.
|
|
* As this function is intended to reset a single ADC, to not impact
|
|
* other ADCs, instructions for global reset of multiple ADCs have been
|
|
* let commented below.
|
|
* If needed, the example code can be copied and uncommented into
|
|
* function HAL_ADC_MspDeInit().
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
ADC_HandleTypeDef tmphadcSharingSameCommonRegister;
|
|
|
|
/* Check ADC handle */
|
|
if(hadc == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Flush register JSQR: queue sequencer reset when injected queue */
|
|
/* sequencer is enabled and ADC disabled. */
|
|
/* Enable injected queue sequencer after injected conversion stop */
|
|
SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);
|
|
|
|
/* Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Change ADC state */
|
|
hadc->State = HAL_ADC_STATE_READY;
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
|
/* correctly completed. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* ========== Reset ADC registers ========== */
|
|
/* Reset register IER */
|
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 |
|
|
ADC_IT_JQOVF | ADC_IT_OVR |
|
|
ADC_IT_JEOS | ADC_IT_JEOC |
|
|
ADC_IT_EOS | ADC_IT_EOC |
|
|
ADC_IT_EOSMP | ADC_IT_RDY ) );
|
|
|
|
/* Reset register ISR */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
|
|
ADC_FLAG_JQOVF | ADC_FLAG_OVR |
|
|
ADC_FLAG_JEOS | ADC_FLAG_JEOC |
|
|
ADC_FLAG_EOS | ADC_FLAG_EOC |
|
|
ADC_FLAG_EOSMP | ADC_FLAG_RDY ) );
|
|
|
|
/* Reset register CR */
|
|
/* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART are */
|
|
/* in access mode "read-set": no direct reset applicable. */
|
|
/* Reset Calibration mode to default setting (single ended): */
|
|
/* Disable voltage regulator: */
|
|
/* Note: Voltage regulator disable is conditioned to ADC state disabled: */
|
|
/* already done above. */
|
|
/* Note: Voltage regulator disable is intended for power saving. */
|
|
/* Sequence to disable voltage regulator: */
|
|
/* 1. Set the intermediate state before moving the ADC voltage regulator */
|
|
/* to disable state. */
|
|
CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN_1 | ADC_CR_ADVREGEN_0 | ADC_CR_ADCALDIF);
|
|
/* 2. Set ADVREGEN bits to 0x10U */
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN_1);
|
|
|
|
/* Reset register CFGR */
|
|
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH | ADC_CFGR_JAUTO | ADC_CFGR_JAWD1EN |
|
|
ADC_CFGR_AWD1EN | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM |
|
|
ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN |
|
|
ADC_CFGR_AUTDLY | ADC_CFGR_CONT | ADC_CFGR_OVRMOD |
|
|
ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL | ADC_CFGR_ALIGN |
|
|
ADC_CFGR_RES | ADC_CFGR_DMACFG | ADC_CFGR_DMAEN );
|
|
|
|
/* Reset register SMPR1 */
|
|
CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_SMP9 | ADC_SMPR1_SMP8 | ADC_SMPR1_SMP7 |
|
|
ADC_SMPR1_SMP6 | ADC_SMPR1_SMP5 | ADC_SMPR1_SMP4 |
|
|
ADC_SMPR1_SMP3 | ADC_SMPR1_SMP2 | ADC_SMPR1_SMP1 );
|
|
|
|
/* Reset register SMPR2 */
|
|
CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 |
|
|
ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 |
|
|
ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10 );
|
|
|
|
/* Reset register TR1 */
|
|
CLEAR_BIT(hadc->Instance->TR1, ADC_TR1_HT1 | ADC_TR1_LT1);
|
|
|
|
/* Reset register TR2 */
|
|
CLEAR_BIT(hadc->Instance->TR2, ADC_TR2_HT2 | ADC_TR2_LT2);
|
|
|
|
/* Reset register TR3 */
|
|
CLEAR_BIT(hadc->Instance->TR3, ADC_TR3_HT3 | ADC_TR3_LT3);
|
|
|
|
/* Reset register SQR1 */
|
|
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 |
|
|
ADC_SQR1_SQ1 | ADC_SQR1_L);
|
|
|
|
/* Reset register SQR2 */
|
|
CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 |
|
|
ADC_SQR2_SQ6 | ADC_SQR2_SQ5);
|
|
|
|
/* Reset register SQR3 */
|
|
CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 |
|
|
ADC_SQR3_SQ11 | ADC_SQR3_SQ10);
|
|
|
|
/* Reset register SQR4 */
|
|
CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15);
|
|
|
|
/* Reset register DR */
|
|
/* bits in access mode read only, no direct reset applicable*/
|
|
|
|
/* Reset register OFR1 */
|
|
CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1);
|
|
/* Reset register OFR2 */
|
|
CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2);
|
|
/* Reset register OFR3 */
|
|
CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3);
|
|
/* Reset register OFR4 */
|
|
CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);
|
|
|
|
/* Reset registers JDR1, JDR2, JDR3, JDR4 */
|
|
/* bits in access mode read only, no direct reset applicable*/
|
|
|
|
/* Reset register AWD2CR */
|
|
CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
|
|
|
|
/* Reset register AWD3CR */
|
|
CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
|
|
|
|
/* Reset register DIFSEL */
|
|
CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);
|
|
|
|
/* Reset register CALFACT */
|
|
CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ========== Reset common ADC registers ========== */
|
|
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* Set handle of the other ADC sharing the same common register */
|
|
ADC_COMMON_ADC_OTHER(hadc, &tmphadcSharingSameCommonRegister);
|
|
|
|
/* Software is allowed to change common parameters only when all ADCs of */
|
|
/* the common group are disabled. */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
( (tmphadcSharingSameCommonRegister.Instance == NULL) ||
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) ) )
|
|
{
|
|
/* Reset configuration of ADC common register CCR:
|
|
- clock mode: CKMODE
|
|
- multimode related parameters: MDMA, DMACFG, DELAY, MULTI (set into
|
|
HAL_ADCEx_MultiModeConfigChannel() )
|
|
- internal measurement paths: Vbat, temperature sensor, Vref (set into
|
|
HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
|
|
*/
|
|
CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_CKMODE |
|
|
ADC_CCR_VBATEN |
|
|
ADC_CCR_TSEN |
|
|
ADC_CCR_VREFEN |
|
|
ADC_CCR_MDMA |
|
|
ADC_CCR_DMACFG |
|
|
ADC_CCR_DELAY |
|
|
ADC_CCR_MULTI );
|
|
|
|
/* Other ADC common registers (CSR, CDR) are in access mode read only,
|
|
no direct reset applicable */
|
|
}
|
|
|
|
|
|
/* ========== Hard reset and clock disable of ADC peripheral ========== */
|
|
/* Into HAL_ADC_MspDeInit(), ADC clock can be hard reset and disabled */
|
|
/* at RCC top level. */
|
|
/* Refer to header of this file for more details on clock disabling */
|
|
/* procedure. */
|
|
|
|
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
if (hadc->MspDeInitCallback == NULL)
|
|
{
|
|
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
|
|
}
|
|
|
|
/* DeInit the low level hardware */
|
|
hadc->MspDeInitCallback(hadc);
|
|
#else
|
|
/* DeInit the low level hardware */
|
|
HAL_ADC_MspDeInit(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Set ADC state */
|
|
hadc->State = HAL_ADC_STATE_RESET;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Deinitialize the ADC peripheral registers to its default reset values.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check ADC handle */
|
|
if(hadc == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
|
/* correctly completed. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* ========== Reset ADC registers ========== */
|
|
/* Reset register SR */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_JEOC | ADC_FLAG_EOC |
|
|
ADC_FLAG_JSTRT | ADC_FLAG_STRT));
|
|
|
|
/* Reset register CR1 */
|
|
CLEAR_BIT(hadc->Instance->CR1, (ADC_CR1_AWDEN | ADC_CR1_JAWDEN | ADC_CR1_DISCNUM |
|
|
ADC_CR1_JDISCEN | ADC_CR1_DISCEN | ADC_CR1_JAUTO |
|
|
ADC_CR1_AWDSGL | ADC_CR1_SCAN | ADC_CR1_JEOCIE |
|
|
ADC_CR1_AWDIE | ADC_CR1_EOCIE | ADC_CR1_AWDCH ));
|
|
|
|
/* Reset register CR2 */
|
|
CLEAR_BIT(hadc->Instance->CR2, (ADC_CR2_TSVREFE | ADC_CR2_SWSTART | ADC_CR2_JSWSTART |
|
|
ADC_CR2_EXTTRIG | ADC_CR2_EXTSEL | ADC_CR2_JEXTTRIG |
|
|
ADC_CR2_JEXTSEL | ADC_CR2_ALIGN | ADC_CR2_DMA |
|
|
ADC_CR2_RSTCAL | ADC_CR2_CAL | ADC_CR2_CONT |
|
|
ADC_CR2_ADON ));
|
|
|
|
/* Reset register SMPR1 */
|
|
CLEAR_BIT(hadc->Instance->SMPR1, (ADC_SMPR1_SMP18 | ADC_SMPR1_SMP17 | ADC_SMPR1_SMP15 |
|
|
ADC_SMPR1_SMP15 | ADC_SMPR1_SMP14 | ADC_SMPR1_SMP13 |
|
|
ADC_SMPR1_SMP12 | ADC_SMPR1_SMP11 | ADC_SMPR1_SMP10 ));
|
|
|
|
/* Reset register SMPR2 */
|
|
CLEAR_BIT(hadc->Instance->SMPR2, (ADC_SMPR2_SMP9 | ADC_SMPR2_SMP8 | ADC_SMPR2_SMP7 |
|
|
ADC_SMPR2_SMP6 | ADC_SMPR2_SMP5 | ADC_SMPR2_SMP4 |
|
|
ADC_SMPR2_SMP3 | ADC_SMPR2_SMP2 | ADC_SMPR2_SMP1 |
|
|
ADC_SMPR2_SMP0 ));
|
|
|
|
/* Reset register JOFR1 */
|
|
CLEAR_BIT(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1);
|
|
/* Reset register JOFR2 */
|
|
CLEAR_BIT(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2);
|
|
/* Reset register JOFR3 */
|
|
CLEAR_BIT(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3);
|
|
/* Reset register JOFR4 */
|
|
CLEAR_BIT(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4);
|
|
|
|
/* Reset register HTR */
|
|
CLEAR_BIT(hadc->Instance->HTR, ADC_HTR_HT);
|
|
/* Reset register LTR */
|
|
CLEAR_BIT(hadc->Instance->LTR, ADC_LTR_LT);
|
|
|
|
/* Reset register SQR1 */
|
|
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L |
|
|
ADC_SQR1_SQ16 | ADC_SQR1_SQ15 |
|
|
ADC_SQR1_SQ14 | ADC_SQR1_SQ13 );
|
|
|
|
/* Reset register SQR1 */
|
|
CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L |
|
|
ADC_SQR1_SQ16 | ADC_SQR1_SQ15 |
|
|
ADC_SQR1_SQ14 | ADC_SQR1_SQ13 );
|
|
|
|
/* Reset register SQR2 */
|
|
CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ12 | ADC_SQR2_SQ11 | ADC_SQR2_SQ10 |
|
|
ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 );
|
|
|
|
/* Reset register SQR3 */
|
|
CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ6 | ADC_SQR3_SQ5 | ADC_SQR3_SQ4 |
|
|
ADC_SQR3_SQ3 | ADC_SQR3_SQ2 | ADC_SQR3_SQ1 );
|
|
|
|
/* Reset register JSQR */
|
|
CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL |
|
|
ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 |
|
|
ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 );
|
|
|
|
/* Reset register JSQR */
|
|
CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL |
|
|
ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 |
|
|
ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1 );
|
|
|
|
/* Reset register DR */
|
|
/* bits in access mode read only, no direct reset applicable*/
|
|
|
|
/* Reset registers JDR1, JDR2, JDR3, JDR4 */
|
|
/* bits in access mode read only, no direct reset applicable*/
|
|
|
|
/* Reset VBAT measurement path, in case of enabled before by selecting */
|
|
/* channel ADC_CHANNEL_VBAT. */
|
|
SYSCFG->CFGR1 &= ~(SYSCFG_CFGR1_VBAT);
|
|
|
|
|
|
/* ========== Hard reset ADC peripheral ========== */
|
|
/* Performs a global reset of the entire ADC peripheral: ADC state is */
|
|
/* forced to a similar state after device power-on. */
|
|
/* If needed, copy-paste and uncomment the following reset code into */
|
|
/* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */
|
|
/* */
|
|
/* __HAL_RCC_ADC1_FORCE_RESET() */
|
|
/* __HAL_RCC_ADC1_RELEASE_RESET() */
|
|
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
if (hadc->MspDeInitCallback == NULL)
|
|
{
|
|
hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
|
|
}
|
|
|
|
/* DeInit the low level hardware */
|
|
hadc->MspDeInitCallback(hadc);
|
|
#else
|
|
/* DeInit the low level hardware */
|
|
HAL_ADC_MspDeInit(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Set ADC state */
|
|
hadc->State = HAL_ADC_STATE_RESET;
|
|
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup ADCEx_Exported_Functions_Group2 ADCEx Input and Output operation functions
|
|
* @brief ADC Extended IO operation functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### IO operation functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Start conversion of regular group.
|
|
(+) Stop conversion of regular group.
|
|
(+) Poll for conversion complete on regular group.
|
|
(+) Poll for conversion event.
|
|
(+) Get result of regular channel conversion.
|
|
(+) Start conversion of regular group and enable interruptions.
|
|
(+) Stop conversion of regular group and disable interruptions.
|
|
(+) Handle ADC interrupt request
|
|
(+) Start conversion of regular group and enable DMA transfer.
|
|
(+) Stop conversion of regular group and disable ADC DMA transfer.
|
|
|
|
(+) Start conversion of injected group.
|
|
(+) Stop conversion of injected group.
|
|
(+) Poll for conversion complete on injected group.
|
|
(+) Get result of injected channel conversion.
|
|
(+) Start conversion of injected group and enable interruptions.
|
|
(+) Stop conversion of injected group and disable interruptions.
|
|
|
|
(+) Start multimode and enable DMA transfer.
|
|
(+) Stop multimode and disable ADC DMA transfer.
|
|
(+) Get result of multimode conversion.
|
|
|
|
(+) Perform the ADC self-calibration for single or differential ending.
|
|
(+) Get calibration factors for single or differential ending.
|
|
(+) Set calibration factors for single or differential ending.
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group.
|
|
* Interruptions enabled in this function: None.
|
|
* @note Case of multimode enabled (for devices with several ADCs):
|
|
* if ADC is slave, ADC is enabled only (conversion is not started).
|
|
* if ADC is master, ADC is enabled and multimode conversion is started.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) and multimode state */
|
|
/* for all cases of multimode: independent mode, multimode ADC master */
|
|
/* or multimode ADC slave (for devices with several ADCs): */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
/* Set ADC state (ADC independent or master) */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set ADC state (ADC slave) */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular*/
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC */
|
|
/* operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Case of multimode enabled (for devices with several ADCs): */
|
|
/* - if ADC is slave, ADC is enabled only (conversion is not started). */
|
|
/* - if ADC is master, ADC is enabled and conversion is started. */
|
|
if (ADC_NONMULTIMODE_REG_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group.
|
|
* Interruptions enabled in this function: None.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) */
|
|
/* If conversions on group regular are also triggering group injected, */
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular */
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Note: Alternate trigger for single conversion could be to force an */
|
|
/* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
|
|
if (ADC_IS_SOFTWARE_START_REGULAR(hadc))
|
|
{
|
|
/* Start ADC conversion on regular group with SW start */
|
|
SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
|
|
}
|
|
else
|
|
{
|
|
/* Start ADC conversion on regular group with external trigger */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC conversion of both groups regular and injected,
|
|
* disable ADC peripheral.
|
|
* @note ADC peripheral disable is forcing interruption of potential
|
|
* conversion on injected group. If injected group is under use,
|
|
* it should be preliminarily stopped using function
|
|
* @ref HAL_ADCEx_InjectedStop().
|
|
* To stop ADC conversion only on ADC group regular
|
|
* while letting ADC group injected conversions running,
|
|
* use function @ref HAL_ADCEx_RegularStop().
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* 1. Stop potential conversion on going, on regular and injected groups */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Stop ADC conversion of regular group (and injected channels in
|
|
* case of auto_injection mode), disable ADC peripheral.
|
|
* @note ADC peripheral disable is forcing interruption of potential
|
|
* conversion on injected group. If injected group is under use, it
|
|
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Wait for regular group conversion to be completed.
|
|
* @note ADC conversion flags EOS (end of sequence) and EOC (end of
|
|
* conversion) are cleared by this function, with an exception:
|
|
* if low power feature "LowPowerAutoWait" is enabled, flags are
|
|
* not cleared to not interfere with this feature until data register
|
|
* is read using function HAL_ADC_GetValue().
|
|
* @note This function cannot be used in a particular setup: ADC configured
|
|
* in DMA mode and polling for end of each conversion (ADC init
|
|
* parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
|
|
* In this case, DMA resets the flag EOC and polling cannot be
|
|
* performed on each conversion. Nevertheless, polling can still
|
|
* be performed on the complete sequence (ADC init
|
|
* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
|
|
* @param hadc ADC handle
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @note Depending on init parameter "EOCSelection", flags EOS or EOC is
|
|
* checked and cleared depending on autodelay status (bit AUTDLY).
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t tmp_Flag_EOC;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
uint32_t tmp_cfgr = 0x0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* If end of conversion selected to end of sequence */
|
|
if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
|
|
{
|
|
tmp_Flag_EOC = ADC_FLAG_EOS;
|
|
}
|
|
/* If end of conversion selected to end of each conversion */
|
|
else /* ADC_EOC_SINGLE_CONV */
|
|
{
|
|
/* Verification that ADC configuration is compliant with polling for */
|
|
/* each conversion: */
|
|
/* Particular case is ADC configured in DMA mode and ADC sequencer with */
|
|
/* several ranks and polling for end of each conversion. */
|
|
/* For code simplicity sake, this particular case is generalized to */
|
|
/* ADC configured in DMA mode and and polling for end of each conversion. */
|
|
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may have up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* Check DMA configuration, depending on MultiMode set or not */
|
|
if (READ_BIT(tmpADC_Common->CCR, ADC_CCR_MULTI) == ADC_MODE_INDEPENDENT)
|
|
{
|
|
if (HAL_IS_BIT_SET(hadc->Instance->CFGR, ADC_CFGR_DMAEN))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* MultiMode is enabled, Common Control Register MDMA bits must be checked */
|
|
if (READ_BIT(tmpADC_Common->CCR, ADC_CCR_MDMA) != RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS);
|
|
|
|
}
|
|
|
|
/* Get relevant register CFGR in ADC instance of ADC master or slave */
|
|
/* in function of multimode state (for devices with multimode */
|
|
/* available). */
|
|
if(ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
|
|
}
|
|
else
|
|
{
|
|
tmp_cfgr = READ_REG(ADC_MASTER_INSTANCE(hadc)->CFGR);
|
|
}
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait until End of Conversion or End of Sequence flag is raised */
|
|
while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update ADC state machine */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
|
|
/* Determine whether any further conversion upcoming on group regular */
|
|
/* by external trigger, continuous mode or scan sequence on going. */
|
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(READ_BIT (tmp_cfgr, ADC_CFGR_CONT) == RESET) )
|
|
{
|
|
/* If End of Sequence is reached, disable interrupts */
|
|
if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
|
|
{
|
|
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
|
|
/* ADSTART==0 (no conversion on going) */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Change ADC state to error state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear end of conversion flag of regular group if low power feature */
|
|
/* "LowPowerAutoWait " is disabled, to not interfere with this feature */
|
|
/* until data register is read using function HAL_ADC_GetValue(). */
|
|
if (READ_BIT (tmp_cfgr, ADC_CFGR_AUTDLY) == RESET)
|
|
{
|
|
/* Clear regular group conversion flag */
|
|
/* (EOC or EOS depending on HAL ADC initialization parameter) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, tmp_Flag_EOC);
|
|
}
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Wait for regular group conversion to be completed.
|
|
* @note This function cannot be used in a particular setup: ADC configured
|
|
* in DMA mode.
|
|
* In this case, DMA resets the flag EOC and polling cannot be
|
|
* performed on each conversion.
|
|
* @note On STM32F37x devices, limitation in case of sequencer enabled
|
|
* (several ranks selected): polling cannot be done on each
|
|
* conversion inside the sequence. In this case, polling is replaced by
|
|
* wait for maximum conversion time.
|
|
* @param hadc ADC handle
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Variables for polling in case of scan mode enabled */
|
|
uint32_t Conversion_Timeout_CPU_cycles_max = 0U;
|
|
uint32_t Conversion_Timeout_CPU_cycles = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Verification that ADC configuration is compliant with polling for */
|
|
/* each conversion: */
|
|
/* Particular case is ADC configured in DMA mode */
|
|
if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Polling for end of conversion: differentiation if single/sequence */
|
|
/* conversion. */
|
|
/* - If single conversion for regular group (Scan mode disabled or enabled */
|
|
/* with NbrOfConversion =1U), flag EOC is used to determine the */
|
|
/* conversion completion. */
|
|
/* - If sequence conversion for regular group (scan mode enabled and */
|
|
/* NbrOfConversion >=2U), flag EOC is set only at the end of the */
|
|
/* sequence. */
|
|
/* To poll for each conversion, the maximum conversion time is computed */
|
|
/* from ADC conversion time (selected sampling time + conversion time of */
|
|
/* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */
|
|
/* settings, conversion time range can be from 28 to 32256 CPU cycles). */
|
|
/* As flag EOC is not set after each conversion, no timeout status can */
|
|
/* be set. */
|
|
if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_SCAN) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L) )
|
|
{
|
|
/* Wait until End of Conversion flag is raised */
|
|
while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC))
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC))
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Replace polling by wait for maximum conversion time */
|
|
/* Calculation of CPU cycles corresponding to ADC conversion cycles. */
|
|
/* Retrieve ADC clock prescaler and ADC maximum conversion cycles on all */
|
|
/* channels. */
|
|
Conversion_Timeout_CPU_cycles_max = ADC_CLOCK_PRESCALER_RANGE() ;
|
|
Conversion_Timeout_CPU_cycles_max *= ADC_CONVCYCLES_MAX_RANGE(hadc);
|
|
|
|
/* Poll with maximum conversion time */
|
|
while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
Conversion_Timeout_CPU_cycles ++;
|
|
}
|
|
}
|
|
|
|
/* Clear regular group conversion flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
|
|
|
|
/* Update ADC state machine */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
|
|
/* Determine whether any further conversion upcoming on group regular */
|
|
/* by external trigger, continuous mode or scan sequence on going. */
|
|
/* Note: On STM32F37x devices, in case of sequencer enabled */
|
|
/* (several ranks selected), end of conversion flag is raised */
|
|
/* at the end of the sequence. */
|
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Poll for conversion event.
|
|
* @param hadc ADC handle
|
|
* @param EventType the ADC event type.
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_AWD1_EVENT: ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices)
|
|
* @arg ADC_AWD2_EVENT: ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families)
|
|
* @arg ADC_AWD3_EVENT: ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families)
|
|
* @arg ADC_OVR_EVENT: ADC Overrun event
|
|
* @arg ADC_JQOVF_EVENT: ADC Injected context queue overflow event
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_EVENT_TYPE(EventType));
|
|
|
|
/* Get start tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check selected event flag */
|
|
while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
switch(EventType)
|
|
{
|
|
/* Analog watchdog (level out of window) event */
|
|
/* Note: In case of several analog watchdog enabled, if needed to know */
|
|
/* which one triggered and on which ADCx, test ADC state of analog watchdog */
|
|
/* flags HAL_ADC_STATE_AWD1/2U/3 using function "HAL_ADC_GetState()". */
|
|
/* For example: */
|
|
/* " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1)) " */
|
|
/* " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD2)) " */
|
|
/* " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD3)) " */
|
|
/* Check analog watchdog 1 flag */
|
|
case ADC_AWD_EVENT:
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
|
|
break;
|
|
|
|
/* Check analog watchdog 2 flag */
|
|
case ADC_AWD2_EVENT:
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
|
|
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
|
|
break;
|
|
|
|
/* Check analog watchdog 3 flag */
|
|
case ADC_AWD3_EVENT:
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
|
|
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
|
|
break;
|
|
|
|
/* Injected context queue overflow event */
|
|
case ADC_JQOVF_EVENT:
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
|
|
|
|
/* Set ADC error code to Injected context queue overflow */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
|
|
|
|
/* Clear ADC Injected context queue overflow flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
|
|
break;
|
|
|
|
/* Overrun event */
|
|
default: /* Case ADC_OVR_EVENT */
|
|
/* If overrun is set to overwrite previous data, overrun event is not */
|
|
/* considered as an error. */
|
|
/* (cf ref manual "Managing conversions without using the DMA and without */
|
|
/* overrun ") */
|
|
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
|
|
|
|
/* Set ADC error code to overrun */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
|
}
|
|
|
|
/* Clear ADC Overrun flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
|
break;
|
|
}
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Poll for conversion event.
|
|
* @param hadc ADC handle
|
|
* @param EventType the ADC event type.
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_AWD_EVENT: ADC Analog watchdog event.
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_EVENT_TYPE(EventType));
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Check selected event flag */
|
|
while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Analog watchdog (level out of window) event */
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group with interruption.
|
|
* Interruptions enabled in this function:
|
|
* - EOC (end of conversion of regular group) or EOS (end of
|
|
* sequence of regular group) depending on ADC initialization
|
|
* parameter "EOCSelection"
|
|
* - overrun, depending on ADC initialization parameter "Overrun"
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function must be called for ADC slave first, then ADC master.
|
|
* For ADC slave, ADC is enabled only (conversion is not started).
|
|
* For ADC master, ADC is enabled and multimode conversion is started.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) and multimode state */
|
|
/* for all cases of multimode: independent mode, multimode ADC master */
|
|
/* or multimode ADC slave (for devices with several ADCs): */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
/* Set ADC state (ADC independent or master) */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set ADC state (ADC slave) */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular*/
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC */
|
|
/* operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
|
|
/* Enable ADC end of conversion interrupt */
|
|
/* Enable ADC overrun interrupt */
|
|
switch(hadc->Init.EOCSelection)
|
|
{
|
|
case ADC_EOC_SEQ_CONV:
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
|
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS));
|
|
break;
|
|
/* case ADC_EOC_SINGLE_CONV */
|
|
default:
|
|
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS));
|
|
break;
|
|
}
|
|
|
|
/* If overrun is set to overwrite previous data (default setting), */
|
|
/* overrun interrupt is not activated (overrun event is not considered */
|
|
/* as an error). */
|
|
/* (cf ref manual "Managing conversions without using the DMA and */
|
|
/* without overrun ") */
|
|
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
|
|
{
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
}
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Case of multimode enabled (for devices with several ADCs): */
|
|
/* - if ADC is slave, ADC is enabled only (conversion is not started). */
|
|
/* - if ADC is master, ADC is enabled and conversion is started. */
|
|
if (ADC_NONMULTIMODE_REG_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group with interruption.
|
|
* Interruptions enabled in this function:
|
|
* - EOC (end of conversion of regular group)
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) */
|
|
/* If conversions on group regular are also triggering group injected, */
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular */
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
|
|
|
|
/* Enable end of conversion interrupt for regular group */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
if (ADC_IS_SOFTWARE_START_REGULAR(hadc))
|
|
{
|
|
/* Start ADC conversion on regular group with SW start */
|
|
SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
|
|
}
|
|
else
|
|
{
|
|
/* Start ADC conversion on regular group with external trigger */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC conversion of both groups regular and injected,
|
|
* disable ADC peripheral.
|
|
* Interruptions disabled in this function:
|
|
* - EOC (end of conversion of regular group) and EOS (end of
|
|
* sequence of regular group)
|
|
* - overrun
|
|
* @note ADC peripheral disable is forcing interruption of potential
|
|
* conversion on injected group. If injected group is under use,
|
|
* it should be preliminarily stopped using function
|
|
* @ref HAL_ADCEx_InjectedStop().
|
|
* To stop ADC conversion only on ADC group regular
|
|
* while letting ADC group injected conversions running,
|
|
* use function @ref HAL_ADCEx_RegularStop_IT().
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* 1. Stop potential conversion on going, on regular and injected groups */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC end of conversion interrupt for regular group */
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
|
|
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Stop ADC conversion of regular group (and injected group in
|
|
* case of auto_injection mode), disable interrution of
|
|
* end-of-conversion, disable ADC peripheral.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC end of conversion interrupt for regular group */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
|
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group and transfers result
|
|
* through DMA.
|
|
* Interruptions enabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function is for single-ADC mode only. For multimode, use the
|
|
* dedicated MultimodeStart function.
|
|
* @param hadc ADC handle
|
|
* @param pData The destination Buffer address.
|
|
* @param Length The length of data to be transferred from ADC peripheral to memory.
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Verification if multimode is disabled (for devices with several ADC) */
|
|
/* If multimode is enabled, dedicated function multimode conversion */
|
|
/* start DMA must be used. */
|
|
if(ADC_COMMON_CCR_MULTI(hadc) == RESET)
|
|
{
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) and multimode state */
|
|
/* for all cases of multimode: independent mode, multimode ADC master */
|
|
/* or multimode ADC slave (for devices with several ADCs): */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
/* Set ADC state (ADC independent or master) */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set ADC state (ADC slave) */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
|
|
/* If conversions on group regular are also triggering group injected,*/
|
|
/* update ADC state. */
|
|
if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular*/
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
|
|
/* Set the DMA transfer complete callback */
|
|
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
|
|
|
|
/* Set the DMA half transfer complete callback */
|
|
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
|
|
|
|
|
|
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
|
|
/* start (in case of SW start): */
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC */
|
|
/* operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
|
|
/* Enable ADC overrun interrupt */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
/* Enable ADC DMA mode */
|
|
SET_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
|
|
|
|
/* Start the DMA channel */
|
|
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately.*/
|
|
/* If external trigger has been selected, conversion will start at */
|
|
/* next trigger event. */
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_ERROR;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of regular group and transfers result
|
|
* through DMA.
|
|
* Interruptions enabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @note For devices with several ADCs: This function is for single-ADC mode
|
|
* only. For multimode, use the dedicated MultimodeStart function.
|
|
* @param hadc ADC handle
|
|
* @param pData The destination Buffer address.
|
|
* @param Length The length of data to be transferred from ADC peripheral to memory.
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* Set group injected state (from auto-injection) */
|
|
/* If conversions on group regular are also triggering group injected, */
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
|
|
/* State machine update: Check if an injected conversion is ongoing */
|
|
if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
/* Reset ADC error code fields related to conversions on group regular */
|
|
CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
|
|
}
|
|
else
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Set the DMA transfer complete callback */
|
|
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
|
|
|
|
/* Set the DMA half transfer complete callback */
|
|
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
|
|
|
|
|
|
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
|
|
/* start (in case of SW start): */
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
|
|
|
|
/* Enable ADC DMA mode */
|
|
hadc->Instance->CR2 |= ADC_CR2_DMA;
|
|
|
|
/* Start the DMA channel */
|
|
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Note: Alternate trigger for single conversion could be to force an */
|
|
/* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
|
|
if (ADC_IS_SOFTWARE_START_REGULAR(hadc))
|
|
{
|
|
/* Start ADC conversion on regular group with SW start */
|
|
SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
|
|
}
|
|
else
|
|
{
|
|
/* Start ADC conversion on regular group with external trigger */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC conversion of both groups regular and injected,
|
|
* disable ADC DMA transfer, disable ADC peripheral.
|
|
* Interruptions disabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* @note ADC peripheral disable is forcing interruption of potential
|
|
* conversion on injected group. If injected group is under use,
|
|
* it should be preliminarily stopped using function
|
|
* @ref HAL_ADCEx_InjectedStop().
|
|
* To stop ADC conversion only on ADC group regular
|
|
* while letting ADC group injected conversions running,
|
|
* use function @ref HAL_ADCEx_RegularStop_DMA().
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function is for single-ADC mode only. For multimode, use the
|
|
* dedicated MultimodeStop function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* 1. Stop potential conversion on going, on regular and injected groups */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
|
|
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
|
|
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
|
/* while DMA transfer is on going) */
|
|
if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
|
|
{
|
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
|
|
/* Check if DMA channel effectively disabled */
|
|
if (tmp_hal_status != HAL_OK)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
}
|
|
}
|
|
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
/* 2. Disable the ADC peripheral */
|
|
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
|
|
/* to retain a potential failing status. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
}
|
|
else
|
|
{
|
|
ADC_Disable(hadc);
|
|
}
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Stop ADC conversion of regular group (and injected group in
|
|
* case of auto_injection mode), disable ADC DMA transfer, disable
|
|
* ADC peripheral.
|
|
* @note ADC peripheral disable is forcing interruption of potential
|
|
* conversion on injected group. If injected group is under use, it
|
|
* should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
|
|
* @note For devices with several ADCs: This function is for single-ADC mode
|
|
* only. For multimode, use the dedicated MultimodeStop function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC DMA mode */
|
|
hadc->Instance->CR2 &= ~ADC_CR2_DMA;
|
|
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
|
/* while DMA transfer is on going) */
|
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
|
|
/* Check if DMA channel effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
}
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Get ADC regular group conversion result.
|
|
* @note Reading register DR automatically clears ADC flag EOC
|
|
* (ADC group regular end of unitary conversion).
|
|
* @note This function does not clear ADC flag EOS
|
|
* (ADC group regular end of sequence conversion).
|
|
* Occurrence of flag EOS rising:
|
|
* - If sequencer is composed of 1 rank, flag EOS is equivalent
|
|
* to flag EOC.
|
|
* - If sequencer is composed of several ranks, during the scan
|
|
* sequence flag EOC only is raised, at the end of the scan sequence
|
|
* both flags EOC and EOS are raised.
|
|
* To clear this flag, either use function:
|
|
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
|
|
* model polling: @ref HAL_ADC_PollForConversion()
|
|
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
|
|
* @param hadc ADC handle
|
|
* @retval ADC group regular conversion data
|
|
*/
|
|
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Note: ADC flag EOC is not cleared here by software because */
|
|
/* automatically cleared by hardware when reading register DR. */
|
|
|
|
/* Return ADC converted value */
|
|
return hadc->Instance->DR;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Get ADC regular group conversion result.
|
|
* @note Reading register DR automatically clears ADC flag EOC
|
|
* (ADC group regular end of unitary conversion).
|
|
* @note This function does not clear ADC flag EOS
|
|
* (ADC group regular end of sequence conversion).
|
|
* Occurrence of flag EOS rising:
|
|
* - If sequencer is composed of 1 rank, flag EOS is equivalent
|
|
* to flag EOC.
|
|
* - If sequencer is composed of several ranks, during the scan
|
|
* sequence flag EOC only is raised, at the end of the scan sequence
|
|
* both flags EOC and EOS are raised.
|
|
* To clear this flag, either use function:
|
|
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
|
|
* model polling: @ref HAL_ADC_PollForConversion()
|
|
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
|
|
* @param hadc ADC handle
|
|
* @retval ADC group regular conversion data
|
|
*/
|
|
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Note: EOC flag is not cleared here by software because automatically */
|
|
/* cleared by hardware when reading register DR. */
|
|
|
|
/* Return ADC converted value */
|
|
return hadc->Instance->DR;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Handles ADC interrupt request.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t overrun_error = 0U; /* flag set if overrun occurrence has to be considered as an error */
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
uint32_t tmp_cfgr = 0x0U;
|
|
uint32_t tmp_cfgr_jqm = 0x0U;
|
|
uint32_t tmp_isr = hadc->Instance->ISR;
|
|
uint32_t tmp_ier = hadc->Instance->IER;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
|
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
|
|
|
|
/* ========== Check End of Conversion flag for regular group ========== */
|
|
if( (((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
|
|
(((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)) )
|
|
{
|
|
/* Update state machine on conversion status if not in error state */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
}
|
|
|
|
/* Get relevant register CFGR in ADC instance of ADC master or slave */
|
|
/* in function of multimode state (for devices with multimode */
|
|
/* available). */
|
|
if (ADC_NONMULTIMODE_REG_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
|
|
}
|
|
else
|
|
{
|
|
tmp_cfgr = READ_REG(ADC_MASTER_INSTANCE(hadc)->CFGR);
|
|
}
|
|
|
|
/* Disable interruption if no further conversion upcoming by regular */
|
|
/* external trigger or by continuous mode, */
|
|
/* and if scan sequence if completed. */
|
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == RESET) )
|
|
{
|
|
/* If End of Sequence is reached, disable interrupts */
|
|
if((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS)
|
|
{
|
|
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
|
|
/* ADSTART==0 (no conversion on going) */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Disable ADC end of sequence conversion interrupt */
|
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
|
/* HAL_Start_IT(), but is not disabled here because can be used */
|
|
/* by overrun IRQ process below. */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
|
|
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Conversion complete callback */
|
|
/* Note: into callback, to determine if conversion has been triggered */
|
|
/* from EOC or EOS, possibility to use: */
|
|
/* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ConvCpltCallback(hadc);
|
|
#else
|
|
HAL_ADC_ConvCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
|
|
/* Clear regular group conversion flag */
|
|
/* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */
|
|
/* conversion flags clear induces the release of the preserved */
|
|
/* data. */
|
|
/* Therefore, if the preserved data value is needed, it must be */
|
|
/* read preliminarily into HAL_ADC_ConvCpltCallback(). */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
|
|
}
|
|
|
|
|
|
/* ========== Check End of Conversion flag for injected group ========== */
|
|
if( (((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
|
|
(((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS)) )
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
|
|
|
|
/* Get relevant register CFGR in ADC instance of ADC master or slave */
|
|
/* in function of multimode state (for devices with multimode */
|
|
/* available). */
|
|
if (ADC_NONMULTIMODE_REG_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
|
|
}
|
|
else
|
|
{
|
|
tmp_cfgr = READ_REG(ADC_MASTER_INSTANCE(hadc)->CFGR);
|
|
}
|
|
|
|
/* Disable interruption if no further conversion upcoming by injected */
|
|
/* external trigger or by automatic injected conversion with regular */
|
|
/* group having no further conversion upcoming (same conditions as */
|
|
/* regular group interruption disabling above), */
|
|
/* and if injected scan sequence is completed. */
|
|
if(ADC_IS_SOFTWARE_START_INJECTED(hadc))
|
|
{
|
|
if((READ_BIT (tmp_cfgr, ADC_CFGR_JAUTO) == RESET) ||
|
|
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(READ_BIT (tmp_cfgr, ADC_CFGR_CONT) == RESET) ) )
|
|
{
|
|
/* If End of Sequence is reached, disable interrupts */
|
|
if((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS)
|
|
{
|
|
|
|
/* Get relevant register CFGR in ADC instance of ADC master or slave */
|
|
/* in function of multimode state (for devices with multimode */
|
|
/* available). */
|
|
if (ADC_NONMULTIMODE_INJ_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
tmp_cfgr_jqm = READ_REG(hadc->Instance->CFGR);
|
|
}
|
|
else
|
|
{
|
|
tmp_cfgr_jqm = READ_REG(ADC_MASTER_INSTANCE(hadc)->CFGR);
|
|
}
|
|
|
|
/* Particular case if injected contexts queue is enabled: */
|
|
/* when the last context has been fully processed, JSQR is reset */
|
|
/* by the hardware. Even if no injected conversion is planned to come */
|
|
/* (queue empty, triggers are ignored), it can start again */
|
|
/* immediately after setting a new context (JADSTART is still set). */
|
|
/* Therefore, state of HAL ADC injected group is kept to busy. */
|
|
if(READ_BIT(tmp_cfgr_jqm, ADC_CFGR_JQM) == RESET)
|
|
{
|
|
/* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */
|
|
/* JADSTART==0 (no conversion on going) */
|
|
if (ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET)
|
|
{
|
|
/* Disable ADC end of sequence conversion interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
|
|
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Conversion complete callback */
|
|
/* Note: into callback, to determine if conversion has been triggered */
|
|
/* from JEOC or JEOS, possibility to use: */
|
|
/* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) " */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->InjectedConvCpltCallback(hadc);
|
|
#else
|
|
HAL_ADCEx_InjectedConvCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Clear injected group conversion flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
|
|
}
|
|
|
|
/* ========== Check analog watchdog 1 flag ========== */
|
|
if(((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
|
|
/* Level out of window 1 callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->LevelOutOfWindowCallback(hadc);
|
|
#else
|
|
HAL_ADC_LevelOutOfWindowCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
|
|
}
|
|
|
|
/* ========== Check analog watchdog 2 flag ========== */
|
|
if(((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
|
|
|
|
/* Level out of window 2 callback */
|
|
HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
|
|
}
|
|
|
|
/* ========== Check analog watchdog 3 flag ========== */
|
|
if(((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
|
|
|
|
/* Level out of window 3 callback */
|
|
HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
|
|
/* Clear ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
|
|
}
|
|
|
|
/* ========== Check Overrun flag ========== */
|
|
if(((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR))
|
|
{
|
|
/* If overrun is set to overwrite previous data (default setting), */
|
|
/* overrun event is not considered as an error. */
|
|
/* (cf ref manual "Managing conversions without using the DMA and */
|
|
/* without overrun ") */
|
|
/* Exception for usage with DMA overrun event always considered as an */
|
|
/* error. */
|
|
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
|
|
{
|
|
overrun_error = 1U;
|
|
}
|
|
else
|
|
{
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* Check DMA configuration, depending on MultiMode set or not */
|
|
if (READ_BIT(tmpADC_Common->CCR, ADC_CCR_MULTI) == ADC_MODE_INDEPENDENT)
|
|
{
|
|
if (HAL_IS_BIT_SET(hadc->Instance->CFGR, ADC_CFGR_DMAEN))
|
|
{
|
|
overrun_error = 1U;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* MultiMode is enabled, Common Control Register MDMA bits must be checked */
|
|
if (READ_BIT(tmpADC_Common->CCR, ADC_CCR_MDMA) != RESET)
|
|
{
|
|
overrun_error = 1U;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (overrun_error == 1U)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
|
|
|
/* Error callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ErrorCallback(hadc);
|
|
#else
|
|
HAL_ADC_ErrorCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Clear the Overrun flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
|
|
|
}
|
|
|
|
|
|
/* ========== Check Injected context queue overflow flag ========== */
|
|
if(((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
|
|
|
|
/* Clear the Injected context queue overflow flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
|
|
|
|
/* Error callback */
|
|
HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
|
|
}
|
|
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Handles ADC interrupt request
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t tmp_sr = hadc->Instance->SR;
|
|
uint32_t tmp_cr1 = hadc->Instance->CR1;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
|
assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
|
|
|
|
|
|
/* ========== Check End of Conversion flag for regular group ========== */
|
|
if((tmp_cr1 & ADC_IT_EOC) == ADC_IT_EOC)
|
|
{
|
|
if((tmp_sr & ADC_FLAG_EOC) == ADC_FLAG_EOC)
|
|
{
|
|
/* Update state machine on conversion status if not in error state */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
}
|
|
|
|
/* Determine whether any further conversion upcoming on group regular */
|
|
/* by external trigger, continuous mode or scan sequence on going. */
|
|
/* Note: On STM32F37x devices, in case of sequencer enabled */
|
|
/* (several ranks selected), end of conversion flag is raised */
|
|
/* at the end of the sequence. */
|
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
|
{
|
|
/* Disable ADC end of single conversion interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
|
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Conversion complete callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ConvCpltCallback(hadc);
|
|
#else
|
|
HAL_ADC_ConvCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Clear regular group conversion flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
|
|
}
|
|
}
|
|
|
|
/* ========== Check End of Conversion flag for injected group ========== */
|
|
if((tmp_cr1 & ADC_IT_JEOC) == ADC_IT_JEOC)
|
|
{
|
|
if((tmp_sr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC)
|
|
{
|
|
/* Update state machine on conversion status if not in error state */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
|
|
}
|
|
|
|
/* Determine whether any further conversion upcoming on group injected */
|
|
/* by external trigger, scan sequence on going or by automatic injected */
|
|
/* conversion from group regular (same conditions as group regular */
|
|
/* interruption disabling above). */
|
|
/* Note: On STM32F37x devices, in case of sequencer enabled */
|
|
/* (several ranks selected), end of conversion flag is raised */
|
|
/* at the end of the sequence. */
|
|
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) ||
|
|
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
|
|
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(hadc->Init.ContinuousConvMode == DISABLE) ) ) )
|
|
{
|
|
/* Disable ADC end of single conversion interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
|
|
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Conversion complete callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->InjectedConvCpltCallback(hadc);
|
|
#else
|
|
HAL_ADCEx_InjectedConvCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Clear injected group conversion flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
|
|
}
|
|
}
|
|
|
|
/* ========== Check Analog watchdog flags ========== */
|
|
if((tmp_cr1 & ADC_IT_AWD) == ADC_IT_AWD)
|
|
{
|
|
if((tmp_sr & ADC_FLAG_AWD) == ADC_FLAG_AWD)
|
|
{
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
|
|
/* Level out of window callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->LevelOutOfWindowCallback(hadc);
|
|
#else
|
|
HAL_ADC_LevelOutOfWindowCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
|
|
/* Clear the ADC analog watchdog flag */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
|
}
|
|
}
|
|
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Perform an ADC automatic self-calibration
|
|
* Calibration prerequisite: ADC must be disabled (execute this
|
|
* function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
|
|
* @param hadc ADC handle
|
|
* @param SingleDiff Selection of single-ended or differential input
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_SINGLE_ENDED: Channel in mode input single ended
|
|
* @arg ADC_DIFFERENTIAL_ENDED: Channel in mode input differential ended
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc, uint32_t SingleDiff)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tickstart;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Calibration prerequisite: ADC must be disabled. */
|
|
|
|
/* Disable the ADC (if not already disabled) */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Change ADC state */
|
|
hadc->State = HAL_ADC_STATE_READY;
|
|
|
|
/* Select calibration mode single ended or differential ended */
|
|
hadc->Instance->CR &= (~ADC_CR_ADCALDIF);
|
|
if (SingleDiff == ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
hadc->Instance->CR |= ADC_CR_ADCALDIF;
|
|
}
|
|
|
|
/* Start ADC calibration */
|
|
hadc->Instance->CR |= ADC_CR_ADCAL;
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for calibration completion */
|
|
while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADCAL))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADCAL))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Perform an ADC automatic self-calibration
|
|
* Calibration prerequisite: ADC must be disabled (execute this
|
|
* function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
|
|
* During calibration process, ADC is enabled. ADC is let enabled at
|
|
* the completion of this function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tickstart;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* 1. Calibration prerequisite: */
|
|
/* - ADC must be disabled for at least two ADC clock cycles in disable */
|
|
/* mode before ADC enable */
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
|
|
|
/* Wait two ADC clock cycles */
|
|
while(wait_loop_index < ADC_CYCLE_WORST_CASE_CPU_CYCLES *2U)
|
|
{
|
|
wait_loop_index++;
|
|
}
|
|
|
|
/* 2. Enable the ADC peripheral */
|
|
ADC_Enable(hadc);
|
|
|
|
|
|
/* 3. Resets ADC calibration registers */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_RSTCAL);
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for calibration reset completion */
|
|
while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_RSTCAL))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_RSTCAL))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* 4. Start ADC calibration */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_CAL);
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for calibration completion */
|
|
while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_CAL))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_CAL))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Get the calibration factor from automatic conversion result
|
|
* @param hadc ADC handle
|
|
* @param SingleDiff Selection of single-ended or differential input
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_SINGLE_ENDED: Channel in mode input single ended
|
|
* @arg ADC_DIFFERENTIAL_ENDED: Channel in mode input differential ended
|
|
* @retval Converted value
|
|
*/
|
|
uint32_t HAL_ADCEx_Calibration_GetValue(ADC_HandleTypeDef* hadc, uint32_t SingleDiff)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
|
|
|
|
/* Return the selected ADC calibration value */
|
|
if (SingleDiff == ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
return ADC_CALFACT_DIFF_GET(hadc->Instance->CALFACT);
|
|
}
|
|
else
|
|
{
|
|
return ((hadc->Instance->CALFACT) & ADC_CALFACT_CALFACT_S);
|
|
}
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Set the calibration factor to overwrite automatic conversion result. ADC must be enabled and no conversion on going.
|
|
* @param hadc ADC handle
|
|
* @param SingleDiff Selection of single-ended or differential input
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_SINGLE_ENDED: Channel in mode input single ended
|
|
* @arg ADC_DIFFERENTIAL_ENDED: Channel in mode input differential ended
|
|
* @param CalibrationFactor Calibration factor (coded on 7 bits maximum)
|
|
* @retval HAL state
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_Calibration_SetValue(ADC_HandleTypeDef* hadc, uint32_t SingleDiff, uint32_t CalibrationFactor)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
|
|
assert_param(IS_ADC_CALFACT(CalibrationFactor));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Verification of hardware constraints before modifying the calibration */
|
|
/* factors register: ADC must be enabled, no conversion on going. */
|
|
if ( (ADC_IS_ENABLE(hadc) != RESET) &&
|
|
(ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET) )
|
|
{
|
|
/* Set the selected ADC calibration value */
|
|
if (SingleDiff == ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
MODIFY_REG(hadc->Instance->CALFACT ,
|
|
ADC_CALFACT_CALFACT_D ,
|
|
ADC_CALFACT_DIFF_SET(CalibrationFactor) );
|
|
}
|
|
else
|
|
{
|
|
MODIFY_REG(hadc->Instance->CALFACT,
|
|
ADC_CALFACT_CALFACT_S ,
|
|
CalibrationFactor );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of injected group.
|
|
* Interruptions enabled in this function: None.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function must be called for ADC slave first, then ADC master.
|
|
* For ADC slave, ADC is enabled only (conversion is not started).
|
|
* For ADC master, ADC is enabled and multimode conversion is started.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
if (ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET)
|
|
{
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to injected group conversion results */
|
|
/* - Set state bitfield related to injected operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
|
|
HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
/* Case of independent mode or multimode(for devices with several ADCs):*/
|
|
/* Set multimode state. */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
}
|
|
|
|
/* Check if a regular conversion is ongoing */
|
|
/* Note: On this device, there is no ADC error code fields related to */
|
|
/* conversions on group injected only. In case of conversion on */
|
|
/* going on group regular, no error code is reset. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear injected group conversion flag */
|
|
/* (To ensure of no unknown state from potential previous ADC */
|
|
/* operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS));
|
|
|
|
/* Enable conversion of injected group, if automatic injected */
|
|
/* conversion is disabled. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Case of multimode enabled (for devices with several ADCs): */
|
|
/* - if ADC is slave, ADC is enabled only (conversion is not started). */
|
|
/* - if ADC is master, ADC is enabled and conversion is started. */
|
|
if (HAL_IS_BIT_CLR(hadc->Instance->CFGR, ADC_CFGR_JAUTO) &&
|
|
ADC_NONMULTIMODE_INJ_OR_MULTIMODEMASTER(hadc) )
|
|
{
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_JADSTART);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of injected group.
|
|
* Interruptions enabled in this function: None.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to injected group conversion results */
|
|
/* - Set state bitfield related to injected operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
|
|
HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
/* Check if a regular conversion is ongoing */
|
|
/* Note: On this device, there is no ADC error code fields related to */
|
|
/* conversions on group injected only. In case of conversion on */
|
|
/* going on group regular, no error code is reset. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear injected group conversion flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
|
|
|
|
/* Enable conversion of injected group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* If automatic injected conversion is enabled, conversion will start */
|
|
/* after next regular group conversion. */
|
|
if (ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
|
|
{
|
|
/* Start ADC conversion on injected group with SW start */
|
|
SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
|
|
}
|
|
else
|
|
{
|
|
/* Start ADC conversion on injected group with external trigger */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC group injected conversion (potential conversion on going
|
|
* on ADC group regular is not impacted), disable ADC peripheral
|
|
* if no conversion is on going on group regular.
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularStop() and @ref HAL_ADCEx_InjectedStop(),
|
|
* use function @ref HAL_ADC_Stop().
|
|
* @note If injected group mode auto-injection is enabled,
|
|
* function HAL_ADC_Stop must be used.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function must be called for ADC master first, then ADC slave.
|
|
* For ADC master, conversion is stopped and ADC is disabled.
|
|
* For ADC slave, ADC is disabled only (conversion stop of ADC master
|
|
* has already stopped conversion of ADC slave).
|
|
* @note In case of auto-injection mode, HAL_ADC_Stop must be used.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
|
|
/* - For ADC injected group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group regular) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group regular) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->CFGR, ADC_CFGR_JAUTO))
|
|
{
|
|
/* 1. Stop potential conversion on going on injected group only. */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group injected is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group regular) is intended to continue. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
if((ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) )
|
|
{
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
/* Conversion on ADC group injected group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group regular is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Stop conversion of injected channels. Disable ADC peripheral if
|
|
* no regular conversion is on going.
|
|
* @note If ADC must be disabled and if conversion is on going on
|
|
* regular group, function HAL_ADC_Stop must be used to stop both
|
|
* injected and regular groups, and disable the ADC.
|
|
* @note In case of auto-injection mode, HAL_ADC_Stop must be used.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential conversion and disable ADC peripheral */
|
|
/* Conditioned to: */
|
|
/* - No conversion on the other group (regular group) is intended to */
|
|
/* continue (injected and regular groups stop conversion and ADC disable */
|
|
/* are common) */
|
|
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
|
|
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
|
|
{
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Wait for injected group conversion to be completed.
|
|
* @param hadc ADC handle
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t tmp_Flag_EOC;
|
|
uint32_t tmp_cfgr = 0x00000000U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* If end of conversion selected to end of sequence */
|
|
if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
|
|
{
|
|
tmp_Flag_EOC = ADC_FLAG_JEOS;
|
|
}
|
|
/* If end of conversion selected to end of each conversion */
|
|
else /* ADC_EOC_SINGLE_CONV */
|
|
{
|
|
tmp_Flag_EOC = (ADC_FLAG_JEOC | ADC_FLAG_JEOS);
|
|
}
|
|
|
|
/* Get relevant register CFGR in ADC instance of ADC master or slave */
|
|
/* in function of multimode state (for devices with multimode */
|
|
/* available). */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
|
|
}
|
|
else
|
|
{
|
|
tmp_cfgr = READ_REG(ADC_MASTER_INSTANCE(hadc)->CFGR);
|
|
}
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait until End of Conversion flag is raised */
|
|
while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update ADC state machine */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
|
|
|
|
/* Determine whether any further conversion upcoming on group injected */
|
|
/* by external trigger or by automatic injected conversion */
|
|
/* from group regular. */
|
|
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) ||
|
|
((READ_BIT (tmp_cfgr, ADC_CFGR_JAUTO) == RESET) &&
|
|
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(READ_BIT (tmp_cfgr, ADC_CFGR_CONT) == RESET) ) ) )
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Clear end of conversion flag of injected group if low power feature */
|
|
/* "Auto Wait" is disabled, to not interfere with this feature until data */
|
|
/* register is read using function HAL_ADC_GetValue(). */
|
|
if (READ_BIT (tmp_cfgr, ADC_CFGR_AUTDLY) == RESET)
|
|
{
|
|
/* Clear injected group conversion flag */
|
|
/* (JEOC or JEOS depending on HAL ADC initialization parameter) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, tmp_Flag_EOC);
|
|
}
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Wait for injected group conversion to be completed.
|
|
* @param hadc ADC handle
|
|
* @param Timeout Timeout value in millisecond.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Variables for polling in case of scan mode enabled */
|
|
uint32_t Conversion_Timeout_CPU_cycles_max =0U;
|
|
uint32_t Conversion_Timeout_CPU_cycles =0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Polling for end of conversion: differentiation if single/sequence */
|
|
/* conversion. */
|
|
/* For injected group, flag JEOC is set only at the end of the sequence, */
|
|
/* not for each conversion within the sequence. */
|
|
/* - If single conversion for injected group (scan mode disabled or */
|
|
/* InjectedNbrOfConversion ==1U), flag JEOC is used to determine the */
|
|
/* conversion completion. */
|
|
/* - If sequence conversion for injected group (scan mode enabled and */
|
|
/* InjectedNbrOfConversion >=2U), flag JEOC is set only at the end of the */
|
|
/* sequence. */
|
|
/* To poll for each conversion, the maximum conversion time is computed */
|
|
/* from ADC conversion time (selected sampling time + conversion time of */
|
|
/* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */
|
|
/* settings, conversion time range can be from 28 to 32256 CPU cycles). */
|
|
/* As flag JEOC is not set after each conversion, no timeout status can */
|
|
/* be set. */
|
|
if ((hadc->Instance->JSQR & ADC_JSQR_JL) == RESET)
|
|
{
|
|
/* Wait until End of Conversion flag is raised */
|
|
while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_JEOC))
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_JEOC))
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Replace polling by wait for maximum conversion time */
|
|
/* Calculation of CPU cycles corresponding to ADC conversion cycles. */
|
|
/* Retrieve ADC clock prescaler and ADC maximum conversion cycles on all */
|
|
/* channels. */
|
|
Conversion_Timeout_CPU_cycles_max = ADC_CLOCK_PRESCALER_RANGE();
|
|
Conversion_Timeout_CPU_cycles_max *= ADC_CONVCYCLES_MAX_RANGE(hadc);
|
|
|
|
/* Poll with maximum conversion time */
|
|
while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
|
|
{
|
|
/* Check if timeout is disabled (set to infinite wait) */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
|
|
{
|
|
/* Update ADC state machine to timeout */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
Conversion_Timeout_CPU_cycles ++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Clear injected group conversion flag (and regular conversion flag raised simultaneously) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC | ADC_FLAG_EOC);
|
|
|
|
/* Update ADC state machine */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
|
|
|
|
/* Determine whether any further conversion upcoming on group injected */
|
|
/* by external trigger or by automatic injected conversion */
|
|
/* from group regular. */
|
|
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) ||
|
|
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
|
|
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(hadc->Init.ContinuousConvMode == DISABLE) ) ) )
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Return ADC state */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of injected group with interruption.
|
|
* Interruptions enabled in this function:
|
|
* - JEOC (end of conversion of injected group) or JEOS (end of
|
|
* sequence of injected group) depending on ADC initialization
|
|
* parameter "EOCSelection"
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function must be called for ADC slave first, then ADC master.
|
|
* For ADC slave, ADC is enabled only (conversion is not started).
|
|
* For ADC master, ADC is enabled and multimode conversion is started.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
if (ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET)
|
|
{
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to injected group conversion results */
|
|
/* - Set state bitfield related to injected operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
|
|
HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
/* Case of independent mode or multimode(for devices with several ADCs):*/
|
|
/* Set multimode state. */
|
|
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
|
|
{
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
|
|
}
|
|
|
|
/* Check if a regular conversion is ongoing */
|
|
/* Note: On this device, there is no ADC error code fields related to */
|
|
/* conversions on group injected only. In case of conversion on */
|
|
/* going on group regular, no error code is reset. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Clear injected group conversion flag */
|
|
/* (To ensure of no unknown state from potential previous ADC */
|
|
/* operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS));
|
|
|
|
/* Enable ADC Injected context queue overflow interrupt if this feature */
|
|
/* is enabled. */
|
|
if ((hadc->Instance->CFGR & ADC_CFGR_JQM) != RESET)
|
|
{
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_FLAG_JQOVF);
|
|
}
|
|
|
|
/* Enable ADC end of conversion interrupt */
|
|
switch(hadc->Init.EOCSelection)
|
|
{
|
|
case ADC_EOC_SEQ_CONV:
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
|
|
break;
|
|
/* case ADC_EOC_SINGLE_CONV */
|
|
default:
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
|
|
break;
|
|
}
|
|
|
|
/* Enable conversion of injected group, if automatic injected */
|
|
/* conversion is disabled. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* Case of multimode enabled (for devices with several ADCs): */
|
|
/* - if ADC is slave, ADC is enabled only (conversion is not started). */
|
|
/* - if ADC is master, ADC is enabled and conversion is started. */
|
|
if (HAL_IS_BIT_CLR(hadc->Instance->CFGR, ADC_CFGR_JAUTO) &&
|
|
ADC_NONMULTIMODE_INJ_OR_MULTIMODEMASTER(hadc) )
|
|
{
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_JADSTART);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enables ADC, starts conversion of injected group with interruption.
|
|
* Interruptions enabled in this function:
|
|
* - JEOC (end of conversion of injected group)
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Enable the ADC peripheral */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
|
|
/* Start conversion if ADC is effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
/* - Clear state bitfield related to injected group conversion results */
|
|
/* - Set state bitfield related to injected operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
|
|
HAL_ADC_STATE_INJ_BUSY);
|
|
|
|
/* Check if a regular conversion is ongoing */
|
|
/* Note: On this device, there is no ADC error code fields related to */
|
|
/* conversions on group injected only. In case of conversion on */
|
|
/* going on group regular, no error code is reset. */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
|
|
{
|
|
/* Reset ADC all error code fields */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
/* Clear injected group conversion flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
|
|
|
|
/* Enable end of conversion interrupt for injected channels */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
|
|
|
|
/* Enable conversion of injected group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
/* If automatic injected conversion is enabled, conversion will start */
|
|
/* after next regular group conversion. */
|
|
if (ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
|
|
{
|
|
/* Start ADC conversion on injected group with SW start */
|
|
SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
|
|
}
|
|
else
|
|
{
|
|
/* Start ADC conversion on injected group with external trigger */
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC group injected conversion (potential conversion on going
|
|
* on ADC group regular is not impacted), disable ADC peripheral
|
|
* if no conversion is on going on group regular.
|
|
* Interruptions disabled in this function:
|
|
* - JEOC (end of conversion of injected group) and JEOS (end of
|
|
* sequence of injected group)
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularStop() and @ref HAL_ADCEx_InjectedStop(),
|
|
* use function @ref HAL_ADC_Stop().
|
|
* @note If injected group mode auto-injection is enabled,
|
|
* function HAL_ADC_Stop must be used.
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function must be called for ADC master first, then ADC slave.
|
|
* For ADC master, conversion is stopped and ADC is disabled.
|
|
* For ADC slave, ADC is disabled only (conversion stop of ADC master
|
|
* has already stopped conversion of ADC slave).
|
|
* @note In case of auto-injection mode, HAL_ADC_Stop must be used.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
|
|
/* - For ADC injected group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group regular) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group regular) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
if(HAL_IS_BIT_CLR(hadc->Instance->CFGR, ADC_CFGR_JAUTO))
|
|
{
|
|
/* 1. Stop potential conversion on going on injected group only. */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group injected is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group regular) is intended to continue. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC end of conversion interrupt for injected channels */
|
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_JEOC | ADC_IT_JEOS | ADC_IT_JQOVF));
|
|
|
|
if((ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) )
|
|
{
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
/* Conversion on ADC group injected group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group regular is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Stop conversion of injected channels, disable interruption of
|
|
* end-of-conversion. Disable ADC peripheral if no regular conversion
|
|
* is on going.
|
|
* @note If ADC must be disabled and if conversion is on going on
|
|
* regular group, function HAL_ADC_Stop must be used to stop both
|
|
* injected and regular groups, and disable the ADC.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential conversion and disable ADC peripheral */
|
|
/* Conditioned to: */
|
|
/* - No conversion on the other group (regular group) is intended to */
|
|
/* continue (injected and regular groups stop conversion and ADC disable */
|
|
/* are common) */
|
|
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
|
|
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
|
|
{
|
|
/* Stop potential conversion on going, on regular and injected groups */
|
|
/* Disable ADC peripheral */
|
|
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Disable ADC end of conversion interrupt for injected channels */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
|
|
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx)
|
|
/**
|
|
* @brief With ADC configured in multimode, for ADC master:
|
|
* Enables ADC, starts conversion of regular group and transfers result
|
|
* through DMA.
|
|
* Multimode must have been previously configured using
|
|
* HAL_ADCEx_MultiModeConfigChannel() function.
|
|
* Interruptions enabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* Each of these interruptions has its dedicated callback function.
|
|
* @note ADC slave must be preliminarily enabled using single-mode
|
|
* HAL_ADC_Start() function.
|
|
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
|
|
* @param pData The destination Buffer address.
|
|
* @param Length The length of data to be transferred from ADC peripheral to memory.
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_HandleTypeDef tmphadcSlave = {0};
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
|
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
|
/* (check on ADC master only) */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Set a temporary handle of the ADC slave associated to the ADC master */
|
|
/* (Depending on STM32F3 product, there may be up to 2 ADC slaves) */
|
|
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
|
|
|
|
if (tmphadcSlave.Instance == NULL)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Enable the ADC peripherals: master and slave (in case if not already */
|
|
/* enabled previously) */
|
|
tmp_hal_status = ADC_Enable(hadc);
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
tmp_hal_status = ADC_Enable(&tmphadcSlave);
|
|
}
|
|
|
|
/* Start conversion all ADCs of multimode are effectively enabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state (ADC master) */
|
|
/* - Clear state bitfield related to regular group conversion results */
|
|
/* - Set state bitfield related to regular operation */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP | HAL_ADC_STATE_MULTIMODE_SLAVE,
|
|
HAL_ADC_STATE_REG_BUSY);
|
|
|
|
/* If conversions on group regular are also triggering group injected, */
|
|
/* update ADC state. */
|
|
if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != RESET)
|
|
{
|
|
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
/* Unlock before starting ADC conversions: in case of potential */
|
|
/* interruption, to let the process to ADC IRQ Handler. */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Set ADC error code to none */
|
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
|
|
|
|
/* Set the DMA transfer complete callback */
|
|
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
|
|
|
|
/* Set the DMA half transfer complete callback */
|
|
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
|
|
|
|
/* Set the DMA error callback */
|
|
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError ;
|
|
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
|
|
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
|
|
/* start (in case of SW start): */
|
|
|
|
/* Clear regular group conversion flag and overrun flag */
|
|
/* (To ensure of no unknown state from potential previous ADC operations) */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
|
|
/* Enable ADC overrun interrupt */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
/* Start the DMA channel */
|
|
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&tmpADC_Common->CDR, (uint32_t)pData, Length);
|
|
|
|
/* Enable conversion of regular group. */
|
|
/* If software start has been selected, conversion starts immediately. */
|
|
/* If external trigger has been selected, conversion will start at next */
|
|
/* trigger event. */
|
|
SET_BIT(hadc->Instance->CR, ADC_CR_ADSTART);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp_hal_status = HAL_BUSY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
/**
|
|
* @brief With ADC configured in multimode, for ADC master:
|
|
* Stop ADC group regular conversion (potential conversion on going
|
|
* on ADC group injected is not impacted),
|
|
* disable ADC DMA transfer, disable ADC peripheral
|
|
* if no conversion is on going on group injected.
|
|
* Interruptions disabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* @note In case of auto-injection mode, this function also stop conversion
|
|
* on ADC group injected.
|
|
* @note Multimode is kept enabled after this function. To disable multimode
|
|
* (set with HAL_ADCEx_MultiModeConfigChannel() ), ADC must be
|
|
* reinitialized using HAL_ADC_Init() or HAL_ADC_ReInit().
|
|
* @note In case of DMA configured in circular mode, function
|
|
* HAL_ADC_Stop_DMA must be called after this function with handle of
|
|
* ADC slave, to properly disable the DMA channel of ADC slave.
|
|
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tickstart;
|
|
ADC_HandleTypeDef tmphadcSlave = {0};
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* 1. Stop potential multimode conversion on going, on regular and */
|
|
/* injected groups. */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set a temporary handle of the ADC slave associated to the ADC master */
|
|
/* (Depending on STM32F3 product, there may be up to 2 ADC slaves) */
|
|
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
|
|
|
|
if (tmphadcSlave.Instance == NULL)
|
|
{
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Procedure to disable the ADC peripheral: wait for conversions */
|
|
/* effectively stopped (ADC master and ADC slave), then disable ADC */
|
|
|
|
/* 1. Wait until ADSTP=0 for ADC master and ADC slave */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) ||
|
|
ADC_IS_CONVERSION_ONGOING_REGULAR(&tmphadcSlave) )
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) ||
|
|
ADC_IS_CONVERSION_ONGOING_REGULAR(&tmphadcSlave) )
|
|
{
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
|
/* while DMA transfer is on going) */
|
|
/* Note: In case of ADC slave using its own DMA channel (multimode */
|
|
/* parameter "DMAAccessMode" set to disabled): */
|
|
/* DMA channel of ADC slave should stopped after this function with */
|
|
/* function HAL_ADC_Stop_DMA. */
|
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
|
|
/* Check if DMA channel effectively disabled */
|
|
if (tmp_hal_status != HAL_OK)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
}
|
|
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
|
|
|
|
/* 2. Disable the ADC peripherals: master and slave */
|
|
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
|
|
/* to retain a potential failing status. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Check if ADC are effectively disabled */
|
|
if ((ADC_Disable(hadc) != HAL_ERROR) &&
|
|
(ADC_Disable(&tmphadcSlave) != HAL_ERROR) )
|
|
{
|
|
tmp_hal_status = HAL_OK;
|
|
|
|
/* Change ADC state (ADC master) */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* In case of error, attempt to disable ADC instances anyway */
|
|
ADC_Disable(hadc);
|
|
ADC_Disable(&tmphadcSlave);
|
|
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
}
|
|
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the last ADC Master&Slave regular conversions results data
|
|
* in the selected multi mode.
|
|
* @note Reading register CDR does not clear flag ADC flag EOC
|
|
* (ADC group regular end of unitary conversion),
|
|
* as it is the case for independent mode data register.
|
|
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
|
|
* @retval The converted data value.
|
|
*/
|
|
uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc)
|
|
{
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
|
|
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hadc);
|
|
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* Return the multi mode conversion value */
|
|
return tmpADC_Common->CDR;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Get ADC injected group conversion result.
|
|
* @note Reading register JDRx automatically clears ADC flag JEOC
|
|
* (ADC group injected end of unitary conversion).
|
|
* @note This function does not clear ADC flag JEOS
|
|
* (ADC group injected end of sequence conversion)
|
|
* Occurrence of flag JEOS rising:
|
|
* - If sequencer is composed of 1 rank, flag JEOS is equivalent
|
|
* to flag JEOC.
|
|
* - If sequencer is composed of several ranks, during the scan
|
|
* sequence flag JEOC only is raised, at the end of the scan sequence
|
|
* both flags JEOC and EOS are raised.
|
|
* Flag JEOS must not be cleared by this function because
|
|
* it would not be compliant with low power features
|
|
* (feature low power auto-wait, not available on all STM32 families).
|
|
* To clear this flag, either use function:
|
|
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
|
|
* model polling: @ref HAL_ADCEx_InjectedPollForConversion()
|
|
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS).
|
|
* @param hadc ADC handle
|
|
* @param InjectedRank the converted ADC injected rank.
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_INJECTED_RANK_1: Injected Channel1 selected
|
|
* @arg ADC_INJECTED_RANK_2: Injected Channel2 selected
|
|
* @arg ADC_INJECTED_RANK_3: Injected Channel3 selected
|
|
* @arg ADC_INJECTED_RANK_4: Injected Channel4 selected
|
|
* @retval ADC group injected conversion data
|
|
*/
|
|
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank)
|
|
{
|
|
uint32_t tmp_jdr = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
|
|
|
|
/* Note: ADC flag JEOC is not cleared here by software because */
|
|
/* automatically cleared by hardware when reading register JDRx. */
|
|
|
|
/* Get ADC converted value */
|
|
switch(InjectedRank)
|
|
{
|
|
case ADC_INJECTED_RANK_4:
|
|
tmp_jdr = hadc->Instance->JDR4;
|
|
break;
|
|
case ADC_INJECTED_RANK_3:
|
|
tmp_jdr = hadc->Instance->JDR3;
|
|
break;
|
|
case ADC_INJECTED_RANK_2:
|
|
tmp_jdr = hadc->Instance->JDR2;
|
|
break;
|
|
case ADC_INJECTED_RANK_1:
|
|
default:
|
|
tmp_jdr = hadc->Instance->JDR1;
|
|
break;
|
|
}
|
|
|
|
/* Return ADC converted value */
|
|
return tmp_jdr;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Get ADC injected group conversion result.
|
|
* @note Reading register JDRx automatically clears ADC flag JEOC
|
|
* (ADC group injected end of unitary conversion).
|
|
* @note This function does not clear ADC flag JEOS
|
|
* (ADC group injected end of sequence conversion)
|
|
* Occurrence of flag JEOS rising:
|
|
* - If sequencer is composed of 1 rank, flag JEOS is equivalent
|
|
* to flag JEOC.
|
|
* - If sequencer is composed of several ranks, during the scan
|
|
* sequence flag JEOC only is raised, at the end of the scan sequence
|
|
* both flags JEOC and EOS are raised.
|
|
* Flag JEOS must not be cleared by this function because
|
|
* it would not be compliant with low power features
|
|
* (feature low power auto-wait, not available on all STM32 families).
|
|
* To clear this flag, either use function:
|
|
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
|
|
* model polling: @ref HAL_ADCEx_InjectedPollForConversion()
|
|
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS).
|
|
* @param hadc ADC handle
|
|
* @param InjectedRank the converted ADC injected rank.
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_INJECTED_RANK_1: Injected Channel1 selected
|
|
* @arg ADC_INJECTED_RANK_2: Injected Channel2 selected
|
|
* @arg ADC_INJECTED_RANK_3: Injected Channel3 selected
|
|
* @arg ADC_INJECTED_RANK_4: Injected Channel4 selected
|
|
* @retval ADC group injected conversion data
|
|
*/
|
|
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank)
|
|
{
|
|
uint32_t tmp_jdr = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
|
|
|
|
/* Get ADC converted value */
|
|
switch(InjectedRank)
|
|
{
|
|
case ADC_INJECTED_RANK_4:
|
|
tmp_jdr = hadc->Instance->JDR4;
|
|
break;
|
|
case ADC_INJECTED_RANK_3:
|
|
tmp_jdr = hadc->Instance->JDR3;
|
|
break;
|
|
case ADC_INJECTED_RANK_2:
|
|
tmp_jdr = hadc->Instance->JDR2;
|
|
break;
|
|
case ADC_INJECTED_RANK_1:
|
|
default:
|
|
tmp_jdr = hadc->Instance->JDR1;
|
|
break;
|
|
}
|
|
|
|
/* Return ADC converted value */
|
|
return tmp_jdr;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Stop ADC group regular conversion (potential conversion on going
|
|
* on ADC group injected is not impacted), disable ADC peripheral
|
|
* if no conversion is on going on group injected.
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularStop() and @ref HAL_ADCEx_InjectedStop(),
|
|
* use function @ref HAL_ADC_Stop().
|
|
* @note In case of auto-injection mode, this function also stop conversion
|
|
* on ADC group injected.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_RegularStop(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - For ADC regular group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group injected) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group injected) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
|
|
/* 1. Stop potential conversion on going, on regular group only */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group regular is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group injected) is intended to continue. */
|
|
if((ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_INJ_BUSY) == RESET) )
|
|
{
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
/* Conversion on ADC group regular group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group injected is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
/**
|
|
* @brief Stop ADC group regular conversion (potential conversion on going
|
|
* on ADC group injected is not impacted), disable ADC peripheral
|
|
* if no conversion is on going on group injected.
|
|
* Interruptions disabled in this function:
|
|
* - EOC (end of conversion of regular group) and EOS (end of
|
|
* sequence of regular group)
|
|
* - overrun
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularStop() and @ref HAL_ADCEx_InjectedStop(),
|
|
* use function @ref HAL_ADC_Stop().
|
|
* @note In case of auto-injection mode, this function also stop conversion
|
|
* on ADC group injected.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_RegularStop_IT(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - For ADC regular group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group injected) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group injected) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
|
|
/* 1. Stop potential conversion on going, on regular group only */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group regular is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group injected) is intended to continue. */
|
|
if((ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_INJ_BUSY) == RESET) )
|
|
{
|
|
/* Disable ADC end of conversion interrupt for regular group */
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
|
|
|
|
/* 2. Disable the ADC peripheral */
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
/* Conversion on ADC group regular group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group injected is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
/**
|
|
* @brief Stop ADC group regular conversion (potential conversion on going
|
|
* on ADC group injected is not impacted),
|
|
* disable ADC DMA transfer, disable ADC peripheral
|
|
* if no conversion is on going on group injected.
|
|
* Interruptions disabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularStop() and @ref HAL_ADCEx_InjectedStop(),
|
|
* use function @ref HAL_ADC_Stop().
|
|
* @note Case of multimode enabled (for devices with several ADCs): This
|
|
* function is for single-ADC mode only. For multimode, use the
|
|
* dedicated MultimodeStop function.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_RegularStop_DMA(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - For ADC regular group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group injected) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group injected) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
|
|
/* 1. Stop potential conversion on going, on regular group only */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group regular is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group injected) is intended to continue. */
|
|
if((ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_INJ_BUSY) == RESET) )
|
|
{
|
|
/* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
|
|
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
|
|
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
|
/* while DMA transfer is on going) */
|
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
|
|
/* Check if DMA channel effectively disabled */
|
|
if (tmp_hal_status != HAL_OK)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
}
|
|
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
/* 2. Disable the ADC peripheral */
|
|
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
|
|
/* to retain a potential failing status. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
tmp_hal_status = ADC_Disable(hadc);
|
|
}
|
|
else
|
|
{
|
|
ADC_Disable(hadc);
|
|
}
|
|
|
|
/* Check if ADC is effectively disabled */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Set ADC state */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
/* Conversion on ADC group regular group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group injected is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx)
|
|
/**
|
|
* @brief With ADC configured in multimode, for ADC master:
|
|
* Stop ADC group regular conversion (potential conversion on going
|
|
* on ADC group injected is not impacted),
|
|
* disable ADC DMA transfer, disable ADC peripheral
|
|
* if no conversion is on going on group injected.
|
|
* Interruptions disabled in this function:
|
|
* - DMA transfer complete
|
|
* - DMA half transfer
|
|
* - overrun
|
|
* @note To stop ADC conversion of both groups regular and injected and to
|
|
* to disable ADC peripheral, instead of using 2 functions
|
|
* @ref HAL_ADCEx_RegularMultiModeStop_DMA() and
|
|
* @ref HAL_ADCEx_InjectedStop(), use function
|
|
* @ref HAL_ADCEx_MultiModeStop_DMA.
|
|
* @note In case of auto-injection mode, this function also stop conversion
|
|
* on ADC group injected.
|
|
* @note Multimode is kept enabled after this function. To disable multimode
|
|
* (set with HAL_ADCEx_MultiModeConfigChannel() ), ADC must be
|
|
* reinitialized using HAL_ADC_Init() or HAL_ADC_ReInit().
|
|
* @note In case of DMA configured in circular mode, function
|
|
* HAL_ADC_Stop_DMA must be called after this function with handle of
|
|
* ADC slave, to properly disable the DMA channel of ADC slave.
|
|
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_RegularMultiModeStop_DMA(ADC_HandleTypeDef* hadc)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tickstart;
|
|
ADC_HandleTypeDef tmphadcSlave = {0};
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Stop potential ADC conversion on going and disable ADC peripheral */
|
|
/* conditioned to: */
|
|
/* - For ADC regular group conversion stop: */
|
|
/* On this STM32 family, conversion on the other group */
|
|
/* (group injected) can continue (groups regular and injected */
|
|
/* conversion stop commands are independent) */
|
|
/* - For ADC disable: */
|
|
/* No conversion on the other group (group injected) must be intended to */
|
|
/* continue (groups regular and injected are both impacted by */
|
|
/* ADC disable) */
|
|
|
|
/* 1. Stop potential conversion on going, on regular group only */
|
|
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
|
|
|
|
/* Disable ADC peripheral if conversion on ADC group regular is */
|
|
/* effectively stopped and if no conversion on the other group */
|
|
/* (ADC group injected) is intended to continue. */
|
|
if((ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET) &&
|
|
((hadc->State & HAL_ADC_STATE_INJ_BUSY) == RESET) )
|
|
{
|
|
/* Set a temporary handle of the ADC slave associated to the ADC master */
|
|
/* (Depending on STM32F3 product, there may be up to 2 ADC slaves) */
|
|
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
|
|
|
|
if (tmphadcSlave.Instance == NULL)
|
|
{
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Procedure to disable the ADC peripheral: wait for conversions */
|
|
/* effectively stopped (ADC master and ADC slave), then disable ADC */
|
|
|
|
/* 1. Wait until ADSTP=0 for ADC master and ADC slave*/
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) ||
|
|
ADC_IS_CONVERSION_ONGOING_REGULAR(&tmphadcSlave) )
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) ||
|
|
ADC_IS_CONVERSION_ONGOING_REGULAR(&tmphadcSlave) )
|
|
{
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
|
/* while DMA transfer is on going) */
|
|
/* Note: In case of ADC slave using its own DMA channel (multimode */
|
|
/* parameter "DMAAccessMode" set to disabled): */
|
|
/* DMA channel of ADC slave should stopped after this function with */
|
|
/* function HAL_ADC_Stop_DMA. */
|
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
|
|
/* Check if DMA channel effectively disabled */
|
|
if (tmp_hal_status != HAL_OK)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
}
|
|
|
|
/* Disable ADC overrun interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
|
|
|
|
|
|
/* 2. Disable the ADC peripherals: master and slave */
|
|
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
|
|
/* to retain a potential failing status. */
|
|
if (tmp_hal_status == HAL_OK)
|
|
{
|
|
/* Check if ADC are effectively disabled */
|
|
if ((ADC_Disable(hadc) != HAL_ERROR) &&
|
|
(ADC_Disable(&tmphadcSlave) != HAL_ERROR) )
|
|
{
|
|
tmp_hal_status = HAL_OK;
|
|
|
|
/* Change ADC state (ADC master) */
|
|
ADC_STATE_CLR_SET(hadc->State,
|
|
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
|
|
HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* In case of error, attempt to disable ADC instances anyway */
|
|
ADC_Disable(hadc);
|
|
ADC_Disable(&tmphadcSlave);
|
|
|
|
/* Update ADC state machine (ADC master) to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
}
|
|
|
|
}
|
|
/* Conversion on ADC group regular group is stopped, but ADC is not */
|
|
/* disabled since conversion on ADC group injected is still on going. */
|
|
else
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx */
|
|
|
|
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
/**
|
|
* @brief Injected conversion complete callback in non blocking mode
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hadc);
|
|
|
|
/* NOTE : This function Should not be modified, when the callback is needed,
|
|
the HAL_ADCEx_InjectedConvCpltCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Injected context queue overflow flag callback.
|
|
* @note This callback is called if injected context queue is enabled
|
|
(parameter "QueueInjectedContext" in injected channel configuration)
|
|
and if a new injected context is set when queue is full (maximum 2
|
|
contexts).
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_ADCEx_InjectedQueueOverflowCallback(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hadc);
|
|
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
|
function HAL_ADCEx_InjectedQueueOverflowCallback must be implemented
|
|
in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Analog watchdog 2 callback in non blocking mode.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_ADCEx_LevelOutOfWindow2Callback(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hadc);
|
|
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
|
function HAL_ADC_LevelOoutOfWindow2Callback must be implemented in the user file.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Analog watchdog 3 callback in non blocking mode.
|
|
* @param hadc ADC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_ADCEx_LevelOutOfWindow3Callback(ADC_HandleTypeDef* hadc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hadc);
|
|
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
|
function HAL_ADC_LevelOoutOfWindow3Callback must be implemented in the user file.
|
|
*/
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup ADCEx_Exported_Functions_Group3 ADCEx Peripheral Control functions
|
|
* @brief ADC Extended Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Configure channels on regular group
|
|
(+) Configure channels on injected group
|
|
(+) Configure multimode
|
|
(+) Configure the analog watchdog
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Configures the the selected channel to be linked to the regular
|
|
* group.
|
|
* @note In case of usage of internal measurement channels:
|
|
* Vbat/VrefInt/TempSensor.
|
|
* The recommended sampling time is at least:
|
|
* - For devices STM32F37x: 17.1us for temperature sensor
|
|
* - For the other STM32F3 devices: 2.2us for each of channels
|
|
* Vbat/VrefInt/TempSensor.
|
|
* These internal paths can be be disabled using function
|
|
* HAL_ADC_DeInit().
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes channel into regular group, following
|
|
* calls to this function can be used to reconfigure some parameters
|
|
* of structure "ADC_ChannelConfTypeDef" on the fly, without resetting
|
|
* the ADC.
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_ChannelConfTypeDef".
|
|
* @param hadc ADC handle
|
|
* @param sConfig Structure ADC channel for regular group.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
ADC_HandleTypeDef tmphadcSharingSameCommonRegister;
|
|
uint32_t tmpOffsetShifted;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
|
|
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
|
|
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff));
|
|
assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber));
|
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
|
|
|
|
|
|
/* Verification of channel number: Channels 1 to 14 are available in */
|
|
/* differential mode. Channels 15U, 16U, 17U, 18 can be used only in */
|
|
/* single-ended mode. */
|
|
if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_ADC_DIFF_CHANNEL(sConfig->Channel));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular group: */
|
|
/* - Channel number */
|
|
/* - Channel rank */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
{
|
|
/* Regular sequence configuration */
|
|
/* For Rank 1 to 4U */
|
|
if (sConfig->Rank < 5U)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR1,
|
|
ADC_SQR1_RK(ADC_SQR2_SQ5, sConfig->Rank) ,
|
|
ADC_SQR1_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
/* For Rank 5 to 9U */
|
|
else if (sConfig->Rank < 10U)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR2,
|
|
ADC_SQR2_RK(ADC_SQR2_SQ5, sConfig->Rank) ,
|
|
ADC_SQR2_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
/* For Rank 10 to 14U */
|
|
else if (sConfig->Rank < 15U)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR3 ,
|
|
ADC_SQR3_RK(ADC_SQR3_SQ10, sConfig->Rank) ,
|
|
ADC_SQR3_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
/* For Rank 15 to 16U */
|
|
else
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR4 ,
|
|
ADC_SQR4_RK(ADC_SQR4_SQ15, sConfig->Rank) ,
|
|
ADC_SQR4_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular group: */
|
|
/* - Channel sampling time */
|
|
/* - Channel offset */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
|
|
{
|
|
/* Channel sampling time configuration */
|
|
/* For channels 10 to 18U */
|
|
if (sConfig->Channel >= ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2 ,
|
|
ADC_SMPR2(ADC_SMPR2_SMP10, sConfig->Channel) ,
|
|
ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel) );
|
|
}
|
|
else /* For channels 1 to 9U */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1 ,
|
|
ADC_SMPR1(ADC_SMPR1_SMP0, sConfig->Channel) ,
|
|
ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel) );
|
|
}
|
|
|
|
|
|
/* Configure the offset: offset enable/disable, channel, offset value */
|
|
|
|
/* Shift the offset in function of the selected ADC resolution. */
|
|
/* Offset has to be left-aligned on bit 11U, the LSB (right bits) are set */
|
|
/* to 0. */
|
|
tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, sConfig->Offset);
|
|
|
|
/* Configure the selected offset register: */
|
|
/* - Enable offset */
|
|
/* - Set channel number */
|
|
/* - Set offset value */
|
|
switch (sConfig->OffsetNumber)
|
|
{
|
|
case ADC_OFFSET_1:
|
|
/* Configure offset register 1U */
|
|
MODIFY_REG(hadc->Instance->OFR1 ,
|
|
ADC_OFR1_OFFSET1_CH |
|
|
ADC_OFR1_OFFSET1 ,
|
|
ADC_OFR1_OFFSET1_EN |
|
|
ADC_OFR_CHANNEL(sConfig->Channel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_2:
|
|
/* Configure offset register 2U */
|
|
MODIFY_REG(hadc->Instance->OFR2 ,
|
|
ADC_OFR2_OFFSET2_CH |
|
|
ADC_OFR2_OFFSET2 ,
|
|
ADC_OFR2_OFFSET2_EN |
|
|
ADC_OFR_CHANNEL(sConfig->Channel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_3:
|
|
/* Configure offset register 3U */
|
|
MODIFY_REG(hadc->Instance->OFR3 ,
|
|
ADC_OFR3_OFFSET3_CH |
|
|
ADC_OFR3_OFFSET3 ,
|
|
ADC_OFR3_OFFSET3_EN |
|
|
ADC_OFR_CHANNEL(sConfig->Channel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_4:
|
|
/* Configure offset register 4U */
|
|
MODIFY_REG(hadc->Instance->OFR4 ,
|
|
ADC_OFR4_OFFSET4_CH |
|
|
ADC_OFR4_OFFSET4 ,
|
|
ADC_OFR4_OFFSET4_EN |
|
|
ADC_OFR_CHANNEL(sConfig->Channel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
/* Case ADC_OFFSET_NONE */
|
|
default :
|
|
/* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is */
|
|
/* enabled. If this is the case, offset OFRx is disabled. */
|
|
if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
|
|
{
|
|
/* Disable offset OFR1*/
|
|
CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN);
|
|
}
|
|
if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
|
|
{
|
|
/* Disable offset OFR2*/
|
|
CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN);
|
|
}
|
|
if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
|
|
{
|
|
/* Disable offset OFR3*/
|
|
CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN);
|
|
}
|
|
if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
|
|
{
|
|
/* Disable offset OFR4*/
|
|
CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN);
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - Single or differential mode */
|
|
/* - Internal measurement channels: Vbat/VrefInt/TempSensor */
|
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
/* Configuration of differential mode */
|
|
if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
/* Disable differential mode (default mode: single-ended) */
|
|
CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfig->Channel));
|
|
}
|
|
else
|
|
{
|
|
/* Enable differential mode */
|
|
SET_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfig->Channel));
|
|
|
|
/* Channel sampling time configuration (channel ADC_INx +1 */
|
|
/* corresponding to differential negative input). */
|
|
/* For channels 10 to 18U */
|
|
if (sConfig->Channel >= ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2,
|
|
ADC_SMPR2(ADC_SMPR2_SMP10, sConfig->Channel +1U) ,
|
|
ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel +1U) );
|
|
}
|
|
else /* For channels 1 to 9U */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1,
|
|
ADC_SMPR1(ADC_SMPR1_SMP0, sConfig->Channel +1U) ,
|
|
ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel +1U) );
|
|
}
|
|
}
|
|
|
|
|
|
/* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
|
|
/* internal measurement paths enable: If internal channel selected, */
|
|
/* enable dedicated internal buffers and path. */
|
|
/* Note: these internal measurement paths can be disabled using */
|
|
/* HAL_ADC_DeInit(). */
|
|
|
|
/* Configuration of common ADC parameters */
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* If the requested internal measurement path has already been enabled, */
|
|
/* bypass the configuration processing. */
|
|
if (( (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_TSEN)) ) ||
|
|
( (sConfig->Channel == ADC_CHANNEL_VBAT) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VBATEN)) ) ||
|
|
( (sConfig->Channel == ADC_CHANNEL_VREFINT) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VREFEN)))
|
|
)
|
|
{
|
|
/* Configuration of common ADC parameters (continuation) */
|
|
/* Set handle of the other ADC sharing the same common register */
|
|
ADC_COMMON_ADC_OTHER(hadc, &tmphadcSharingSameCommonRegister);
|
|
|
|
/* Software is allowed to change common parameters only when all ADCs */
|
|
/* of the common group are disabled. */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
( (tmphadcSharingSameCommonRegister.Instance == NULL) ||
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) ) )
|
|
{
|
|
/* If Channel_16 is selected, enable Temp. sensor measurement path */
|
|
/* Note: Temp. sensor internal channels available on ADC1 only */
|
|
if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && (hadc->Instance == ADC1))
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_TSEN);
|
|
|
|
/* Delay for temperature sensor stabilization time */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
}
|
|
/* If Channel_17 is selected, enable VBAT measurement path */
|
|
/* Note: VBAT internal channels available on ADC1 only */
|
|
else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && (hadc->Instance == ADC1))
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_VBATEN);
|
|
}
|
|
/* If Channel_18 is selected, enable VREFINT measurement path */
|
|
/* Note: VrefInt internal channels available on all ADCs, but only */
|
|
/* one ADC is allowed to be connected to VrefInt at the same */
|
|
/* time. */
|
|
else if (sConfig->Channel == ADC_CHANNEL_VREFINT)
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_VREFEN);
|
|
}
|
|
}
|
|
/* If the requested internal measurement path has already been */
|
|
/* enabled and other ADC of the common group are enabled, internal */
|
|
/* measurement paths cannot be enabled. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
/* If a conversion is on going on regular group, no update on regular */
|
|
/* channel could be done on neither of the channel configuration structure */
|
|
/* parameters. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Configures the the selected channel to be linked to the regular
|
|
* group.
|
|
* @note In case of usage of internal measurement channels:
|
|
* Vbat/VrefInt/TempSensor.
|
|
* The recommended sampling time is at least:
|
|
* - For devices STM32F37x: 17.1us for temperature sensor
|
|
* - For the other STM32F3 devices: 2.2us for each of channels
|
|
* Vbat/VrefInt/TempSensor.
|
|
* These internal paths can be be disabled using function
|
|
* HAL_ADC_DeInit().
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes channel into regular group, following
|
|
* calls to this function can be used to reconfigure some parameters
|
|
* of structure "ADC_ChannelConfTypeDef" on the fly, without resetting
|
|
* the ADC.
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_ChannelConfTypeDef".
|
|
* @param hadc ADC handle
|
|
* @param sConfig Structure of ADC channel for regular group.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
|
|
assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
|
|
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
|
|
/* Regular sequence configuration */
|
|
/* For Rank 1 to 6U */
|
|
if (sConfig->Rank < 7U)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR3 ,
|
|
ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank) ,
|
|
ADC_SQR3_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
/* For Rank 7 to 12U */
|
|
else if (sConfig->Rank < 13U)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR2 ,
|
|
ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank) ,
|
|
ADC_SQR2_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
/* For Rank 13 to 16U */
|
|
else
|
|
{
|
|
MODIFY_REG(hadc->Instance->SQR1 ,
|
|
ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank) ,
|
|
ADC_SQR1_RK(sConfig->Channel, sConfig->Rank) );
|
|
}
|
|
|
|
|
|
/* Channel sampling time configuration */
|
|
/* For channels 10 to 18U */
|
|
if (sConfig->Channel > ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1 ,
|
|
ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel) ,
|
|
ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel) );
|
|
}
|
|
else /* For channels 0 to 9U */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2 ,
|
|
ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel) ,
|
|
ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel) );
|
|
}
|
|
|
|
/* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
|
|
/* and VREFINT measurement path. */
|
|
if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) ||
|
|
(sConfig->Channel == ADC_CHANNEL_VREFINT) )
|
|
{
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
|
|
|
|
if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR))
|
|
{
|
|
/* Delay for temperature sensor stabilization time */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
}
|
|
}
|
|
/* if ADC1 Channel_18 is selected, enable VBAT measurement path */
|
|
else if (sConfig->Channel == ADC_CHANNEL_VBAT)
|
|
{
|
|
SET_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_VBAT);
|
|
}
|
|
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Configures the ADC injected group and the selected channel to be
|
|
* linked to the injected group.
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes injected group, following calls to this
|
|
* function can be used to reconfigure some parameters of structure
|
|
* "ADC_InjectionConfTypeDef" on the fly, without resetting the ADC.
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_InjectionConfTypeDef".
|
|
* @note In case of usage of internal measurement channels:
|
|
* Vbat/VrefInt/TempSensor.
|
|
* The recommended sampling time is at least:
|
|
* - For devices STM32F37x: 17.1us for temperature sensor
|
|
* - For the other STM32F3 devices: 2.2us for each of channels
|
|
* Vbat/VrefInt/TempSensor.
|
|
* These internal paths can be be disabled using function
|
|
* HAL_ADC_DeInit().
|
|
* @note To reset injected sequencer, function HAL_ADCEx_InjectedStop() can
|
|
* be used.
|
|
* @note Caution: For Injected Context Queue use: a context must be fully
|
|
* defined before start of injected conversion: all channels configured
|
|
* consecutively for the same ADC instance. Therefore, Number of calls of
|
|
* HAL_ADCEx_InjectedConfigChannel() must correspond to value of parameter
|
|
* InjectedNbrOfConversion for each context.
|
|
* - Example 1: If 1 context intended to be used (or not use of this feature:
|
|
* QueueInjectedContext=DISABLE) and usage of the 3 first injected ranks
|
|
* (InjectedNbrOfConversion=3), HAL_ADCEx_InjectedConfigChannel() must be
|
|
* called once for each channel (3 times) before launching a conversion.
|
|
* This function must not be called to configure the 4th injected channel:
|
|
* it would start a new context into context queue.
|
|
* - Example 2: If 2 contexts intended to be used and usage of the 3 first
|
|
* injected ranks (InjectedNbrOfConversion=3),
|
|
* HAL_ADCEx_InjectedConfigChannel() must be called once for each channel and
|
|
* for each context (3 channels x 2 contexts = 6 calls). Conversion can
|
|
* start once the 1st context is set. The 2nd context can be set on the fly.
|
|
* @param hadc ADC handle
|
|
* @param sConfigInjected Structure of ADC injected group and ADC channel for
|
|
* injected group.
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
ADC_HandleTypeDef tmphadcSharingSameCommonRegister;
|
|
uint32_t tmpOffsetShifted;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Injected context queue feature: temporary JSQR variables defined in */
|
|
/* static to be passed over calls of this function */
|
|
uint32_t tmp_JSQR_ContextQueueBeingBuilt = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
|
|
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfigInjected->InjectedSingleDiff));
|
|
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
|
|
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->QueueInjectedContext));
|
|
assert_param(IS_ADC_EXTTRIGINJEC_EDGE(sConfigInjected->ExternalTrigInjecConvEdge));
|
|
assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv));
|
|
assert_param(IS_ADC_OFFSET_NUMBER(sConfigInjected->InjectedOffsetNumber));
|
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset));
|
|
|
|
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
|
|
{
|
|
assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
|
|
assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion));
|
|
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
|
|
}
|
|
|
|
/* Verification of channel number: Channels 1 to 14 are available in */
|
|
/* differential mode. Channels 15U, 16U, 17U, 18 can be used only in */
|
|
/* single-ended mode. */
|
|
if (sConfigInjected->InjectedSingleDiff != ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_ADC_DIFF_CHANNEL(sConfigInjected->InjectedChannel));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Configuration of Injected group sequencer. */
|
|
/* Hardware constraint: Must fully define injected context register JSQR */
|
|
/* before make it entering into injected sequencer queue. */
|
|
/* */
|
|
/* - if scan mode is disabled: */
|
|
/* * Injected channels sequence length is set to 0x00: 1 channel */
|
|
/* converted (channel on injected rank 1U) */
|
|
/* Parameter "InjectedNbrOfConversion" is discarded. */
|
|
/* * Injected context register JSQR setting is simple: register is fully */
|
|
/* defined on one call of this function (for injected rank 1U) and can */
|
|
/* be entered into queue directly. */
|
|
/* - if scan mode is enabled: */
|
|
/* * Injected channels sequence length is set to parameter */
|
|
/* "InjectedNbrOfConversion". */
|
|
/* * Injected context register JSQR setting more complex: register is */
|
|
/* fully defined over successive calls of this function, for each */
|
|
/* injected channel rank. It is entered into queue only when all */
|
|
/* injected ranks have been set. */
|
|
/* Note: Scan mode is not present by hardware on this device, but used */
|
|
/* by software for alignment over all STM32 devices. */
|
|
|
|
if ((hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) ||
|
|
(sConfigInjected->InjectedNbrOfConversion == 1U) )
|
|
{
|
|
/* Configuration of context register JSQR: */
|
|
/* - number of ranks in injected group sequencer: fixed to 1st rank */
|
|
/* (scan mode disabled, only rank 1 used) */
|
|
/* - external trigger to start conversion */
|
|
/* - external trigger polarity */
|
|
/* - channel set to rank 1 (scan mode disabled, only rank 1 used) */
|
|
|
|
if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1)
|
|
{
|
|
/* Enable external trigger if trigger selection is different of */
|
|
/* software start. */
|
|
/* Note: This configuration keeps the hardware feature of parameter */
|
|
/* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */
|
|
/* software start. */
|
|
if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
|
|
{
|
|
SET_BIT(tmp_JSQR_ContextQueueBeingBuilt, ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1) |
|
|
ADC_JSQR_JEXTSEL_SET(hadc, sConfigInjected->ExternalTrigInjecConv) |
|
|
sConfigInjected->ExternalTrigInjecConvEdge );
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(tmp_JSQR_ContextQueueBeingBuilt, ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1) );
|
|
}
|
|
|
|
/* Update ADC register JSQR */
|
|
MODIFY_REG(hadc->Instance->JSQR ,
|
|
ADC_JSQR_JSQ4 |
|
|
ADC_JSQR_JSQ3 |
|
|
ADC_JSQR_JSQ2 |
|
|
ADC_JSQR_JSQ1 |
|
|
ADC_JSQR_JEXTEN |
|
|
ADC_JSQR_JEXTSEL |
|
|
ADC_JSQR_JL ,
|
|
tmp_JSQR_ContextQueueBeingBuilt );
|
|
|
|
/* For debug and informative reasons, hadc handle saves JSQR setting */
|
|
hadc->InjectionConfig.ContextQueue = tmp_JSQR_ContextQueueBeingBuilt;
|
|
}
|
|
/* If another injected rank than rank1 was intended to be set, and could */
|
|
/* not due to ScanConvMode disabled, error is reported. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Case of scan mode enabled, several channels to set into injected group */
|
|
/* sequencer. */
|
|
/* Procedure to define injected context register JSQR over successive */
|
|
/* calls of this function, for each injected channel rank: */
|
|
|
|
/* 1. Start new context and set parameters related to all injected */
|
|
/* channels: injected sequence length and trigger */
|
|
if (hadc->InjectionConfig.ChannelCount == 0U)
|
|
{
|
|
/* Initialize number of channels that will be configured on the context */
|
|
/* being built */
|
|
hadc->InjectionConfig.ChannelCount = sConfigInjected->InjectedNbrOfConversion;
|
|
/* Initialize value that will be set into register JSQR */
|
|
hadc->InjectionConfig.ContextQueue = 0x00000000U;
|
|
|
|
/* Configuration of context register JSQR: */
|
|
/* - number of ranks in injected group sequencer */
|
|
/* - external trigger to start conversion */
|
|
/* - external trigger polarity */
|
|
|
|
/* Enable external trigger if trigger selection is different of */
|
|
/* software start. */
|
|
/* Note: This configuration keeps the hardware feature of parameter */
|
|
/* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */
|
|
/* software start. */
|
|
if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
|
|
{
|
|
SET_BIT(hadc->InjectionConfig.ContextQueue, (sConfigInjected->InjectedNbrOfConversion - 1U) |
|
|
ADC_JSQR_JEXTSEL_SET(hadc, sConfigInjected->ExternalTrigInjecConv) |
|
|
sConfigInjected->ExternalTrigInjecConvEdge );
|
|
}
|
|
else
|
|
{
|
|
SET_BIT(hadc->InjectionConfig.ContextQueue, (sConfigInjected->InjectedNbrOfConversion - 1U) );
|
|
}
|
|
|
|
}
|
|
|
|
/* 2. Continue setting of context under definition with parameter */
|
|
/* related to each channel: channel rank sequence */
|
|
|
|
/* Set the JSQx bits for the selected rank */
|
|
MODIFY_REG(hadc->InjectionConfig.ContextQueue ,
|
|
ADC_JSQR_RK(ADC_SQR3_SQ10, sConfigInjected->InjectedRank) ,
|
|
ADC_JSQR_RK(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank) );
|
|
|
|
/* Decrease channel count after setting into temporary JSQR variable */
|
|
hadc->InjectionConfig.ChannelCount --;
|
|
|
|
/* 3. End of context setting: If last channel set, then write context */
|
|
/* into register JSQR and make it enter into queue */
|
|
if (hadc->InjectionConfig.ChannelCount == 0U)
|
|
{
|
|
/* Update ADC register JSQR */
|
|
MODIFY_REG(hadc->Instance->JSQR ,
|
|
ADC_JSQR_JSQ4 |
|
|
ADC_JSQR_JSQ3 |
|
|
ADC_JSQR_JSQ2 |
|
|
ADC_JSQR_JSQ1 |
|
|
ADC_JSQR_JEXTEN |
|
|
ADC_JSQR_JEXTSEL |
|
|
ADC_JSQR_JL ,
|
|
hadc->InjectionConfig.ContextQueue );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on injected group: */
|
|
/* - Injected context queue: Queue disable (active context is kept) or */
|
|
/* enable (context decremented, up to 2 contexts queued) */
|
|
/* - Injected discontinuous mode: can be enabled only if auto-injected */
|
|
/* mode is disabled. */
|
|
if (ADC_IS_CONVERSION_ONGOING_INJECTED(hadc) == RESET)
|
|
{
|
|
/* If auto-injected mode is disabled: no constraint */
|
|
if (sConfigInjected->AutoInjectedConv == DISABLE)
|
|
{
|
|
MODIFY_REG(hadc->Instance->CFGR ,
|
|
ADC_CFGR_JQM |
|
|
ADC_CFGR_JDISCEN ,
|
|
ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext) |
|
|
ADC_CFGR_INJECT_DISCCONTINUOUS((uint32_t)sConfigInjected->InjectedDiscontinuousConvMode) );
|
|
}
|
|
/* If auto-injected mode is enabled: Injected discontinuous setting is */
|
|
/* discarded. */
|
|
else
|
|
{
|
|
MODIFY_REG(hadc->Instance->CFGR ,
|
|
ADC_CFGR_JQM |
|
|
ADC_CFGR_JDISCEN ,
|
|
ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext) );
|
|
|
|
/* If injected discontinuous mode was intended to be set and could not */
|
|
/* due to auto-injected enabled, error is reported. */
|
|
if (sConfigInjected->InjectedDiscontinuousConvMode == ENABLE)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular and injected groups: */
|
|
/* - Automatic injected conversion: can be enabled if injected group */
|
|
/* external triggers are disabled. */
|
|
/* - Channel sampling time */
|
|
/* - Channel offset */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
|
|
{
|
|
/* If injected group external triggers are disabled (set to injected */
|
|
/* software start): no constraint */
|
|
if (sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START)
|
|
{
|
|
MODIFY_REG(hadc->Instance->CFGR ,
|
|
ADC_CFGR_JAUTO ,
|
|
ADC_CFGR_INJECT_AUTO_CONVERSION((uint32_t)sConfigInjected->AutoInjectedConv) );
|
|
}
|
|
/* If Automatic injected conversion was intended to be set and could not */
|
|
/* due to injected group external triggers enabled, error is reported. */
|
|
else
|
|
{
|
|
/* Disable Automatic injected conversion */
|
|
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO);
|
|
|
|
if (sConfigInjected->AutoInjectedConv == ENABLE)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
|
|
/* Channel sampling time configuration */
|
|
/* For channels 10 to 18U */
|
|
if (sConfigInjected->InjectedChannel >= ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2 ,
|
|
ADC_SMPR2(ADC_SMPR2_SMP10, sConfigInjected->InjectedChannel) ,
|
|
ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
|
|
}
|
|
else /* For channels 1 to 9U */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1 ,
|
|
ADC_SMPR1(ADC_SMPR1_SMP0, sConfigInjected->InjectedChannel) ,
|
|
ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
|
|
}
|
|
|
|
/* Configure the offset: offset enable/disable, channel, offset value */
|
|
|
|
/* Shift the offset in function of the selected ADC resolution. */
|
|
/* Offset has to be left-aligned on bit 11U, the LSB (right bits) are set */
|
|
/* to 0. */
|
|
tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, sConfigInjected->InjectedOffset);
|
|
|
|
/* Configure the selected offset register: */
|
|
/* - Enable offset */
|
|
/* - Set channel number */
|
|
/* - Set offset value */
|
|
switch (sConfigInjected->InjectedOffsetNumber)
|
|
{
|
|
case ADC_OFFSET_1:
|
|
/* Configure offset register 1U */
|
|
MODIFY_REG(hadc->Instance->OFR1 ,
|
|
ADC_OFR1_OFFSET1_CH |
|
|
ADC_OFR1_OFFSET1 ,
|
|
ADC_OFR1_OFFSET1_EN |
|
|
ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_2:
|
|
/* Configure offset register 2U */
|
|
MODIFY_REG(hadc->Instance->OFR2 ,
|
|
ADC_OFR2_OFFSET2_CH |
|
|
ADC_OFR2_OFFSET2 ,
|
|
ADC_OFR2_OFFSET2_EN |
|
|
ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_3:
|
|
/* Configure offset register 3U */
|
|
MODIFY_REG(hadc->Instance->OFR3 ,
|
|
ADC_OFR3_OFFSET3_CH |
|
|
ADC_OFR3_OFFSET3 ,
|
|
ADC_OFR3_OFFSET3_EN |
|
|
ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
case ADC_OFFSET_4:
|
|
/* Configure offset register 4U */
|
|
MODIFY_REG(hadc->Instance->OFR4 ,
|
|
ADC_OFR4_OFFSET4_CH |
|
|
ADC_OFR4_OFFSET4 ,
|
|
ADC_OFR4_OFFSET4_EN |
|
|
ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel) |
|
|
tmpOffsetShifted );
|
|
break;
|
|
|
|
/* Case ADC_OFFSET_NONE */
|
|
default :
|
|
/* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is */
|
|
/* enabled. If this is the case, offset OFRx is disabled. */
|
|
if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel))
|
|
{
|
|
/* Disable offset OFR1*/
|
|
CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN);
|
|
}
|
|
if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel))
|
|
{
|
|
/* Disable offset OFR2*/
|
|
CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN);
|
|
}
|
|
if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel))
|
|
{
|
|
/* Disable offset OFR3*/
|
|
CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN);
|
|
}
|
|
if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfigInjected->InjectedChannel))
|
|
{
|
|
/* Disable offset OFR4*/
|
|
CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN);
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - Single or differential mode */
|
|
/* - Internal measurement channels: Vbat/VrefInt/TempSensor */
|
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
/* Configuration of differential mode */
|
|
if (sConfigInjected->InjectedSingleDiff != ADC_DIFFERENTIAL_ENDED)
|
|
{
|
|
/* Disable differential mode (default mode: single-ended) */
|
|
CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfigInjected->InjectedChannel));
|
|
}
|
|
else
|
|
{
|
|
/* Enable differential mode */
|
|
SET_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_CHANNEL(sConfigInjected->InjectedChannel));
|
|
|
|
/* Channel sampling time configuration (channel ADC_INx +1 */
|
|
/* corresponding to differential negative input). */
|
|
/* For channels 10 to 18U */
|
|
if (sConfigInjected->InjectedChannel >= ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2,
|
|
ADC_SMPR2(ADC_SMPR2_SMP10, sConfigInjected->InjectedChannel +1U),
|
|
ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel +1U) );
|
|
}
|
|
else /* For channels 1 to 9U */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1,
|
|
ADC_SMPR1(ADC_SMPR1_SMP0, sConfigInjected->InjectedChannel +1U),
|
|
ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel +1U) );
|
|
}
|
|
}
|
|
|
|
|
|
/* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
|
|
/* internal measurement paths enable: If internal channel selected, */
|
|
/* enable dedicated internal buffers and path. */
|
|
/* Note: these internal measurement paths can be disabled using */
|
|
/* HAL_ADC_deInit(). */
|
|
|
|
/* Configuration of common ADC parameters */
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* If the requested internal measurement path has already been enabled, */
|
|
/* bypass the configuration processing. */
|
|
if (( (sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_TSEN)) ) ||
|
|
( (sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VBATEN)) ) ||
|
|
( (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) &&
|
|
(HAL_IS_BIT_CLR(tmpADC_Common->CCR, ADC_CCR_VREFEN)))
|
|
)
|
|
{
|
|
/* Configuration of common ADC parameters (continuation) */
|
|
/* Set handle of the other ADC sharing the same common register */
|
|
ADC_COMMON_ADC_OTHER(hadc, &tmphadcSharingSameCommonRegister);
|
|
|
|
/* Software is allowed to change common parameters only when all ADCs */
|
|
/* of the common group are disabled. */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
( (tmphadcSharingSameCommonRegister.Instance == NULL) ||
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) ) )
|
|
{
|
|
/* If Channel_16 is selected, enable Temp. sensor measurement path */
|
|
/* Note: Temp. sensor internal channels available on ADC1 only */
|
|
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) && (hadc->Instance == ADC1))
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_TSEN);
|
|
|
|
/* Delay for temperature sensor stabilization time */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
}
|
|
/* If Channel_17 is selected, enable VBAT measurement path */
|
|
/* Note: VBAT internal channels available on ADC1 only */
|
|
else if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT) && (hadc->Instance == ADC1))
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_VBATEN);
|
|
}
|
|
/* If Channel_18 is selected, enable VREFINT measurement path */
|
|
/* Note: VrefInt internal channels available on all ADCs, but only */
|
|
/* one ADC is allowed to be connected to VrefInt at the same */
|
|
/* time. */
|
|
else if (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT)
|
|
{
|
|
SET_BIT(tmpADC_Common->CCR, ADC_CCR_VREFEN);
|
|
}
|
|
}
|
|
/* If the requested internal measurement path has already been enabled */
|
|
/* and other ADC of the common group are enabled, internal */
|
|
/* measurement paths cannot be enabled. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Configures the ADC injected group and the selected channel to be
|
|
* linked to the injected group.
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes injected group, following calls to this
|
|
* function can be used to reconfigure some parameters of structure
|
|
* "ADC_InjectionConfTypeDef" on the fly, without resetting the ADC.
|
|
* The setting of these parameters is conditioned to ADC state:
|
|
* this function must be called when ADC is not under conversion.
|
|
* @note In case of usage of internal measurement channels:
|
|
* Vbat/VrefInt/TempSensor.
|
|
* The recommended sampling time is at least:
|
|
* - For devices STM32F37x: 17.1us for temperature sensor
|
|
* - For the other STM32F3 devices: 2.2us for each of channels
|
|
* Vbat/VrefInt/TempSensor.
|
|
* These internal paths can be be disabled using function
|
|
* HAL_ADC_DeInit().
|
|
* @param hadc ADC handle
|
|
* @param sConfigInjected Structure of ADC injected group and ADC channel for
|
|
* injected group.
|
|
* @retval None
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
|
|
assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
|
|
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
|
|
assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv));
|
|
assert_param(IS_ADC_RANGE(sConfigInjected->InjectedOffset));
|
|
|
|
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
|
|
{
|
|
assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
|
|
assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion));
|
|
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Configuration of injected group sequencer: */
|
|
/* - if scan mode is disabled, injected channels sequence length is set to */
|
|
/* 0x00: 1 channel converted (channel on regular rank 1U) */
|
|
/* Parameter "InjectedNbrOfConversion" is discarded. */
|
|
/* Note: Scan mode is present by hardware on this device and, if */
|
|
/* disabled, discards automatically nb of conversions. Anyway, nb of */
|
|
/* conversions is forced to 0x00 for alignment over all STM32 devices. */
|
|
/* - if scan mode is enabled, injected channels sequence length is set to */
|
|
/* parameter "InjectedNbrOfConversion". */
|
|
if (hadc->Init.ScanConvMode == ADC_SCAN_DISABLE)
|
|
{
|
|
if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1)
|
|
{
|
|
/* Clear the old SQx bits for all injected ranks */
|
|
MODIFY_REG(hadc->Instance->JSQR ,
|
|
ADC_JSQR_JL |
|
|
ADC_JSQR_JSQ4 |
|
|
ADC_JSQR_JSQ3 |
|
|
ADC_JSQR_JSQ2 |
|
|
ADC_JSQR_JSQ1 ,
|
|
ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel,
|
|
ADC_INJECTED_RANK_1,
|
|
0x01U) );
|
|
}
|
|
/* If another injected rank than rank1 was intended to be set, and could */
|
|
/* not due to ScanConvMode disabled, error is reported. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Since injected channels rank conv. order depends on total number of */
|
|
/* injected conversions, selected rank must be below or equal to total */
|
|
/* number of injected conversions to be updated. */
|
|
if (sConfigInjected->InjectedRank <= sConfigInjected->InjectedNbrOfConversion)
|
|
{
|
|
/* Clear the old SQx bits for the selected rank */
|
|
/* Set the SQx bits for the selected rank */
|
|
MODIFY_REG(hadc->Instance->JSQR ,
|
|
|
|
ADC_JSQR_JL |
|
|
ADC_JSQR_RK_JL(ADC_JSQR_JSQ1,
|
|
sConfigInjected->InjectedRank,
|
|
sConfigInjected->InjectedNbrOfConversion) ,
|
|
|
|
ADC_JSQR_JL_SHIFT(sConfigInjected->InjectedNbrOfConversion) |
|
|
ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel,
|
|
sConfigInjected->InjectedRank,
|
|
sConfigInjected->InjectedNbrOfConversion) );
|
|
}
|
|
else
|
|
{
|
|
/* Clear the old SQx bits for the selected rank */
|
|
MODIFY_REG(hadc->Instance->JSQR ,
|
|
|
|
ADC_JSQR_JL |
|
|
ADC_JSQR_RK_JL(ADC_JSQR_JSQ1,
|
|
sConfigInjected->InjectedRank,
|
|
sConfigInjected->InjectedNbrOfConversion) ,
|
|
|
|
0x00000000 );
|
|
}
|
|
}
|
|
|
|
/* Configuration of injected group */
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - external trigger to start conversion */
|
|
/* Parameters update not conditioned to ADC state: */
|
|
/* - Automatic injected conversion */
|
|
/* - Injected discontinuous mode */
|
|
/* Note: In case of ADC already enabled, caution to not launch an unwanted */
|
|
/* conversion while modifying register CR2 by writing 1 to bit ADON. */
|
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
MODIFY_REG(hadc->Instance->CR2 ,
|
|
ADC_CR2_JEXTSEL |
|
|
ADC_CR2_ADON ,
|
|
sConfigInjected->ExternalTrigInjecConv );
|
|
}
|
|
|
|
/* Configuration of injected group */
|
|
/* - Automatic injected conversion */
|
|
/* - Injected discontinuous mode */
|
|
|
|
/* Automatic injected conversion can be enabled if injected group */
|
|
/* external triggers are disabled. */
|
|
if (sConfigInjected->AutoInjectedConv == ENABLE)
|
|
{
|
|
if (sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START)
|
|
{
|
|
SET_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Injected discontinuous can be enabled only if auto-injected mode is */
|
|
/* disabled. */
|
|
if (sConfigInjected->InjectedDiscontinuousConvMode == ENABLE)
|
|
{
|
|
if (sConfigInjected->AutoInjectedConv == DISABLE)
|
|
{
|
|
SET_BIT(hadc->Instance->CR1, ADC_CR1_JDISCEN);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
|
|
/* InjectedChannel sampling time configuration */
|
|
/* For channels 10 to 18 */
|
|
if (sConfigInjected->InjectedChannel > ADC_CHANNEL_10)
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR1,
|
|
ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel),
|
|
ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
|
|
}
|
|
else /* For channels 1 to 9 */
|
|
{
|
|
MODIFY_REG(hadc->Instance->SMPR2,
|
|
ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel),
|
|
ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
|
|
}
|
|
|
|
|
|
/* Configure the offset: offset enable/disable, InjectedChannel, offset value */
|
|
switch(sConfigInjected->InjectedRank)
|
|
{
|
|
case 1:
|
|
/* Set injected channel 1 offset */
|
|
MODIFY_REG(hadc->Instance->JOFR1,
|
|
ADC_JOFR1_JOFFSET1,
|
|
sConfigInjected->InjectedOffset);
|
|
break;
|
|
case 2:
|
|
/* Set injected channel 2 offset */
|
|
MODIFY_REG(hadc->Instance->JOFR2,
|
|
ADC_JOFR2_JOFFSET2,
|
|
sConfigInjected->InjectedOffset);
|
|
break;
|
|
case 3:
|
|
/* Set injected channel 3 offset */
|
|
MODIFY_REG(hadc->Instance->JOFR3,
|
|
ADC_JOFR3_JOFFSET3,
|
|
sConfigInjected->InjectedOffset);
|
|
break;
|
|
case 4:
|
|
default:
|
|
MODIFY_REG(hadc->Instance->JOFR4,
|
|
ADC_JOFR4_JOFFSET4,
|
|
sConfigInjected->InjectedOffset);
|
|
break;
|
|
}
|
|
|
|
/* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
|
|
/* and VREFINT measurement path. */
|
|
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) ||
|
|
(sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) )
|
|
{
|
|
if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET)
|
|
{
|
|
SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
|
|
|
|
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR))
|
|
{
|
|
/* Delay for temperature sensor stabilization time */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* if ADC1 Channel_18 is selected, enable VBAT measurement path */
|
|
else if (sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT)
|
|
{
|
|
SET_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_VBAT);
|
|
}
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Configures the analog watchdog.
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes the selected analog watchdog, following
|
|
* calls to this function can be used to reconfigure some parameters
|
|
* of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting
|
|
* the ADC.
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_AnalogWDGConfTypeDef".
|
|
* @param hadc ADC handle
|
|
* @param AnalogWDGConfig Structure of ADC analog watchdog configuration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
|
|
uint32_t tmpAWDHighThresholdShifted;
|
|
uint32_t tmpAWDLowThresholdShifted;
|
|
|
|
uint32_t tmpADCFlagAWD2orAWD3;
|
|
uint32_t tmpADCITAWD2orAWD3;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber));
|
|
assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
|
|
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
|
|
|
|
/* Verify if threshold is within the selected ADC resolution */
|
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
|
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
|
|
|
|
if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
|
|
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
|
|
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) )
|
|
{
|
|
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular and injected groups: */
|
|
/* - Analog watchdog channels */
|
|
/* - Analog watchdog thresholds */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc) == RESET)
|
|
{
|
|
|
|
/* Analog watchdogs configuration */
|
|
if(AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
|
|
{
|
|
/* Configuration of analog watchdog: */
|
|
/* - Set the analog watchdog enable mode: regular and/or injected */
|
|
/* groups, one or overall group of channels. */
|
|
/* - Set the Analog watchdog channel (is not used if watchdog */
|
|
/* mode "all channels": ADC_CFGR_AWD1SGL=0U). */
|
|
MODIFY_REG(hadc->Instance->CFGR ,
|
|
ADC_CFGR_AWD1SGL |
|
|
ADC_CFGR_JAWD1EN |
|
|
ADC_CFGR_AWD1EN |
|
|
ADC_CFGR_AWD1CH ,
|
|
AnalogWDGConfig->WatchdogMode |
|
|
ADC_CFGR_AWD1CH_SHIFT(AnalogWDGConfig->Channel) );
|
|
|
|
/* Shift the offset in function of the selected ADC resolution: */
|
|
/* Thresholds have to be left-aligned on bit 11U, the LSB (right bits) */
|
|
/* are set to 0 */
|
|
tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
|
|
tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
|
|
|
|
/* Set the high and low thresholds */
|
|
MODIFY_REG(hadc->Instance->TR1 ,
|
|
ADC_TR1_HT1 |
|
|
ADC_TR1_LT1 ,
|
|
ADC_TRX_HIGHTHRESHOLD(tmpAWDHighThresholdShifted) |
|
|
tmpAWDLowThresholdShifted );
|
|
|
|
/* Clear the ADC Analog watchdog flag (in case of left enabled by */
|
|
/* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */
|
|
/* or HAL_ADC_PollForEvent(). */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD1);
|
|
|
|
/* Configure ADC Analog watchdog interrupt */
|
|
if(AnalogWDGConfig->ITMode == ENABLE)
|
|
{
|
|
/* Enable the ADC Analog watchdog interrupt */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD1);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the ADC Analog watchdog interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD1);
|
|
}
|
|
|
|
}
|
|
/* Case of ADC_ANALOGWATCHDOG_2 and ADC_ANALOGWATCHDOG_3 */
|
|
else
|
|
{
|
|
/* Shift the threshold in function of the selected ADC resolution */
|
|
/* have to be left-aligned on bit 7U, the LSB (right bits) are set to 0 */
|
|
tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
|
|
tmpAWDLowThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
|
|
|
|
if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
|
|
{
|
|
/* Set the Analog watchdog channel or group of channels. This also */
|
|
/* enables the watchdog. */
|
|
/* Note: Conditional register reset, because several channels can be */
|
|
/* set by successive calls of this function. */
|
|
if (AnalogWDGConfig->WatchdogMode != ADC_ANALOGWATCHDOG_NONE)
|
|
{
|
|
/* Set the high and low thresholds */
|
|
MODIFY_REG(hadc->Instance->TR2 ,
|
|
ADC_TR2_HT2 |
|
|
ADC_TR2_LT2 ,
|
|
ADC_TRX_HIGHTHRESHOLD(tmpAWDHighThresholdShifted) |
|
|
tmpAWDLowThresholdShifted );
|
|
|
|
SET_BIT(hadc->Instance->AWD2CR, ADC_CFGR_AWD23CR(AnalogWDGConfig->Channel));
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hadc->Instance->TR2, ADC_TR2_HT2 | ADC_TR2_LT2);
|
|
CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
|
|
}
|
|
|
|
/* Set temporary variable to flag and IT of AWD2 or AWD3 for further */
|
|
/* settings. */
|
|
tmpADCFlagAWD2orAWD3 = ADC_FLAG_AWD2;
|
|
tmpADCITAWD2orAWD3 = ADC_IT_AWD2;
|
|
}
|
|
/* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
|
|
else
|
|
{
|
|
/* Set the Analog watchdog channel or group of channels. This also */
|
|
/* enables the watchdog. */
|
|
/* Note: Conditional register reset, because several channels can be */
|
|
/* set by successive calls of this function. */
|
|
if (AnalogWDGConfig->WatchdogMode != ADC_ANALOGWATCHDOG_NONE)
|
|
{
|
|
/* Set the high and low thresholds */
|
|
MODIFY_REG(hadc->Instance->TR3 ,
|
|
ADC_TR3_HT3 |
|
|
ADC_TR3_LT3 ,
|
|
ADC_TRX_HIGHTHRESHOLD(tmpAWDHighThresholdShifted) |
|
|
tmpAWDLowThresholdShifted );
|
|
|
|
SET_BIT(hadc->Instance->AWD3CR, ADC_CFGR_AWD23CR(AnalogWDGConfig->Channel));
|
|
}
|
|
else
|
|
{
|
|
CLEAR_BIT(hadc->Instance->TR3, ADC_TR3_HT3 | ADC_TR3_LT3);
|
|
CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
|
|
}
|
|
|
|
/* Set temporary variable to flag and IT of AWD2 or AWD3 for further */
|
|
/* settings. */
|
|
tmpADCFlagAWD2orAWD3 = ADC_FLAG_AWD3;
|
|
tmpADCITAWD2orAWD3 = ADC_IT_AWD3;
|
|
}
|
|
|
|
/* Clear the ADC Analog watchdog flag (in case of left enabled by */
|
|
/* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */
|
|
/* or HAL_ADC_PollForEvent(). */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, tmpADCFlagAWD2orAWD3);
|
|
|
|
/* Configure ADC Analog watchdog interrupt */
|
|
if(AnalogWDGConfig->ITMode == ENABLE)
|
|
{
|
|
__HAL_ADC_ENABLE_IT(hadc, tmpADCITAWD2orAWD3);
|
|
}
|
|
else
|
|
{
|
|
__HAL_ADC_DISABLE_IT(hadc, tmpADCITAWD2orAWD3);
|
|
}
|
|
}
|
|
|
|
}
|
|
/* If a conversion is on going on regular or injected groups, no update */
|
|
/* could be done on neither of the AWD configuration structure parameters. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Configures the analog watchdog.
|
|
* @note Analog watchdog thresholds can be modified while ADC conversion
|
|
* is on going.
|
|
* In this case, some constraints must be taken into account:
|
|
* the programmed threshold values are effective from the next
|
|
* ADC EOC (end of unitary conversion).
|
|
* Considering that registers write delay may happen due to
|
|
* bus activity, this might cause an uncertainty on the
|
|
* effective timing of the new programmed threshold values.
|
|
* @param hadc ADC handle
|
|
* @param AnalogWDGConfig Structure of ADC analog watchdog configuration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
|
|
{
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
|
|
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
|
|
assert_param(IS_ADC_RANGE(AnalogWDGConfig->HighThreshold));
|
|
assert_param(IS_ADC_RANGE(AnalogWDGConfig->LowThreshold));
|
|
|
|
if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
|
|
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
|
|
(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC) )
|
|
{
|
|
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Analog watchdog configuration */
|
|
|
|
/* Configure ADC Analog watchdog interrupt */
|
|
if(AnalogWDGConfig->ITMode == ENABLE)
|
|
{
|
|
/* Enable the ADC Analog watchdog interrupt */
|
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the ADC Analog watchdog interrupt */
|
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
|
|
}
|
|
|
|
/* Configuration of analog watchdog: */
|
|
/* - Set the analog watchdog enable mode: regular and/or injected groups, */
|
|
/* one or all channels. */
|
|
/* - Set the Analog watchdog channel (is not used if watchdog */
|
|
/* mode "all channels": ADC_CFGR_AWD1SGL=0U). */
|
|
MODIFY_REG(hadc->Instance->CR1 ,
|
|
ADC_CR1_AWDSGL |
|
|
ADC_CR1_JAWDEN |
|
|
ADC_CR1_AWDEN |
|
|
ADC_CR1_AWDCH ,
|
|
AnalogWDGConfig->WatchdogMode |
|
|
AnalogWDGConfig->Channel );
|
|
|
|
/* Set the high threshold */
|
|
WRITE_REG(hadc->Instance->HTR, AnalogWDGConfig->HighThreshold);
|
|
|
|
/* Set the low threshold */
|
|
WRITE_REG(hadc->Instance->LTR, AnalogWDGConfig->LowThreshold);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx)
|
|
/**
|
|
* @brief Enable ADC multimode and configure multimode parameters
|
|
* @note Possibility to update parameters on the fly:
|
|
* This function initializes multimode parameters, following
|
|
* calls to this function can be used to reconfigure some parameters
|
|
* of structure "ADC_MultiModeTypeDef" on the fly, without resetting
|
|
* the ADCs (both ADCs of the common group).
|
|
* The setting of these parameters is conditioned to ADC state.
|
|
* For parameters constraints, see comments of structure
|
|
* "ADC_MultiModeTypeDef".
|
|
* @note To change back configuration from multimode to single mode, ADC must
|
|
* be reset (using function HAL_ADC_Init() ).
|
|
* @param hadc ADC handle
|
|
* @param multimode Structure of ADC multimode configuration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef* hadc, ADC_MultiModeTypeDef* multimode)
|
|
{
|
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
ADC_Common_TypeDef *tmpADC_Common;
|
|
ADC_HandleTypeDef tmphadcSharingSameCommonRegister;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_MODE(multimode->Mode));
|
|
if(multimode->Mode != ADC_MODE_INDEPENDENT)
|
|
{
|
|
assert_param(IS_ADC_DMA_ACCESS_MODE(multimode->DMAAccessMode));
|
|
assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay));
|
|
}
|
|
|
|
/* Set handle of the other ADC sharing the same common register */
|
|
ADC_COMMON_ADC_OTHER(hadc, &tmphadcSharingSameCommonRegister);
|
|
if (tmphadcSharingSameCommonRegister.Instance == NULL)
|
|
{
|
|
/* Return function status */
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hadc);
|
|
|
|
/* Parameters update conditioned to ADC state: */
|
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
|
/* conversion on going on regular group: */
|
|
/* - Multimode DMA configuration */
|
|
/* - Multimode DMA mode */
|
|
if ( (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
|
&& (ADC_IS_CONVERSION_ONGOING_REGULAR(&tmphadcSharingSameCommonRegister) == RESET) )
|
|
{
|
|
/* Pointer to the common control register to which is belonging hadc */
|
|
/* (Depending on STM32F3 product, there may have up to 4 ADC and 2 common */
|
|
/* control registers) */
|
|
tmpADC_Common = ADC_COMMON_REGISTER(hadc);
|
|
|
|
/* If multimode is selected, configure all multimode parameters. */
|
|
/* Otherwise, reset multimode parameters (can be used in case of */
|
|
/* transition from multimode to independent mode). */
|
|
if(multimode->Mode != ADC_MODE_INDEPENDENT)
|
|
{
|
|
/* Configuration of ADC common group ADC1&ADC2, ADC3&ADC4 if available */
|
|
/* (ADC2, ADC3, ADC4 availability depends on STM32 product) */
|
|
/* - DMA access mode */
|
|
MODIFY_REG(tmpADC_Common->CCR ,
|
|
ADC_CCR_MDMA |
|
|
ADC_CCR_DMACFG ,
|
|
multimode->DMAAccessMode |
|
|
ADC_CCR_MULTI_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) );
|
|
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - Multimode mode selection */
|
|
/* - Set delay between two sampling phases */
|
|
/* Note: Delay range depends on selected resolution: */
|
|
/* from 1 to 12 clock cycles for 12 bits */
|
|
/* from 1 to 10 clock cycles for 10 bits, */
|
|
/* from 1 to 8 clock cycles for 8 bits */
|
|
/* from 1 to 6 clock cycles for 6 bits */
|
|
/* If a higher delay is selected, it will be clamped to maximum delay */
|
|
/* range */
|
|
/* Note: If ADC is not in the appropriate state to modify these */
|
|
/* parameters, their setting is bypassed without error reporting */
|
|
/* (as it can be the expected behaviour in case of intended action */
|
|
/* to update parameter above (which fulfills the ADC state */
|
|
/* condition: no conversion on going on group regular) */
|
|
/* on the fly). */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) )
|
|
{
|
|
MODIFY_REG(tmpADC_Common->CCR ,
|
|
ADC_CCR_MULTI |
|
|
ADC_CCR_DELAY ,
|
|
multimode->Mode |
|
|
multimode->TwoSamplingDelay );
|
|
}
|
|
}
|
|
else /* ADC_MODE_INDEPENDENT */
|
|
{
|
|
CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_MDMA | ADC_CCR_DMACFG);
|
|
|
|
/* Parameters that can be updated only when ADC is disabled: */
|
|
/* - Multimode mode selection */
|
|
/* - Multimode delay */
|
|
if ((ADC_IS_ENABLE(hadc) == RESET) &&
|
|
(ADC_IS_ENABLE(&tmphadcSharingSameCommonRegister) == RESET) )
|
|
{
|
|
CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_MULTI | ADC_CCR_DELAY);
|
|
}
|
|
}
|
|
}
|
|
/* If one of the ADC sharing the same common group is enabled, no update */
|
|
/* could be done on neither of the multimode structure parameters. */
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
|
|
tmp_hal_status = HAL_ERROR;
|
|
}
|
|
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
/* Return function status */
|
|
return tmp_hal_status;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F328xx || STM32F334x8 */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup ADCEx_Private_Functions ADCEx Private Functions
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief DMA transfer complete callback.
|
|
* @param hdma pointer to DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Update state machine on conversion status if not in error state */
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
|
|
{
|
|
/* Update ADC state machine */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
|
|
/* Determine whether any further conversion upcoming on group regular */
|
|
/* by external trigger, continuous mode or scan sequence on going. */
|
|
/* Note: On STM32F3 devices, in case of sequencer enabled */
|
|
/* (several ranks selected), end of conversion flag is raised */
|
|
/* at the end of the sequence. */
|
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
|
{
|
|
/* Set ADC state */
|
|
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
|
|
|
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
|
|
{
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
|
|
}
|
|
}
|
|
|
|
/* Conversion complete callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ConvCpltCallback(hadc);
|
|
#else
|
|
HAL_ADC_ConvCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Call DMA error callback */
|
|
hadc->DMA_Handle->XferErrorCallback(hdma);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DMA half transfer complete callback.
|
|
* @param hdma pointer to DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Half conversion callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ConvHalfCpltCallback(hadc);
|
|
#else
|
|
HAL_ADC_ConvHalfCpltCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA error callback
|
|
* @param hdma pointer to DMA handle.
|
|
* @retval None
|
|
*/
|
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Set ADC state */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
|
|
/* Set ADC error code to DMA error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
|
|
|
|
/* Error callback */
|
|
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
|
|
hadc->ErrorCallback(hadc);
|
|
#else
|
|
HAL_ADC_ErrorCallback(hadc);
|
|
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
|
|
defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
|
|
defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
|
|
defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)
|
|
/**
|
|
* @brief Enable the selected ADC.
|
|
* @note Prerequisite condition to use this function: ADC must be disabled
|
|
* and voltage regulator must be enabled (done into HAL_ADC_Init()).
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* ADC enable and wait for ADC ready (in case of ADC is disabled or */
|
|
/* enabling phase not yet completed: flag ADC ready not yet set). */
|
|
/* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
|
|
/* causes: ADC clock not running, ...). */
|
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
/* Check if conditions to enable the ADC are fulfilled */
|
|
if (ADC_ENABLING_CONDITIONS(hadc) == RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Enable the ADC peripheral */
|
|
__HAL_ADC_ENABLE(hadc);
|
|
|
|
/* Wait for ADC effectively enabled */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return HAL status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Disable the selected ADC.
|
|
* @note Prerequisite condition to use this function: ADC conversions must be
|
|
* stopped.
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Verification if ADC is not already disabled: */
|
|
/* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */
|
|
/* disabled. */
|
|
if (ADC_IS_ENABLE(hadc) != RESET )
|
|
{
|
|
/* Check if conditions to disable the ADC are fulfilled */
|
|
if (ADC_DISABLING_CONDITIONS(hadc) != RESET)
|
|
{
|
|
/* Disable the ADC peripheral */
|
|
__HAL_ADC_DISABLE(hadc);
|
|
}
|
|
else
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Wait for ADC effectively disabled */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return HAL status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Stop ADC conversion.
|
|
* @param hadc ADC handle
|
|
* @param ConversionGroup ADC group regular and/or injected.
|
|
* This parameter can be one of the following values:
|
|
* @arg ADC_REGULAR_GROUP: ADC regular conversion type.
|
|
* @arg ADC_INJECTED_GROUP: ADC injected conversion type.
|
|
* @arg ADC_REGULAR_INJECTED_GROUP: ADC regular and injected conversion type.
|
|
* @retval HAL status.
|
|
*/
|
|
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc, uint32_t ConversionGroup)
|
|
{
|
|
uint32_t tmp_ADC_CR_ADSTART_JADSTART = 0U;
|
|
uint32_t tickstart = 0U;
|
|
uint32_t Conversion_Timeout_CPU_cycles = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));
|
|
|
|
/* Verification if ADC is not already stopped (on regular and injected */
|
|
/* groups) to bypass this function if not needed. */
|
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR_INJECTED(hadc))
|
|
{
|
|
/* Particular case of continuous auto-injection mode combined with */
|
|
/* auto-delay mode. */
|
|
/* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */
|
|
/* injected group stop ADC_CR_JADSTP). */
|
|
/* Procedure to be followed: Wait until JEOS=1U, clear JEOS, set ADSTP=1 */
|
|
/* (see reference manual). */
|
|
if ((HAL_IS_BIT_SET(hadc->Instance->CFGR, ADC_CFGR_JAUTO)) &&
|
|
(hadc->Init.ContinuousConvMode==ENABLE) &&
|
|
(hadc->Init.LowPowerAutoWait==ENABLE) )
|
|
{
|
|
/* Use stop of regular group */
|
|
ConversionGroup = ADC_REGULAR_GROUP;
|
|
|
|
/* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
|
|
while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == RESET)
|
|
{
|
|
if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES *4U))
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
Conversion_Timeout_CPU_cycles ++;
|
|
}
|
|
|
|
/* Clear JEOS */
|
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
|
|
}
|
|
|
|
/* Stop potential conversion on going on regular group */
|
|
if (ConversionGroup != ADC_INJECTED_GROUP)
|
|
{
|
|
/* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0U */
|
|
if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) )
|
|
{
|
|
/* Stop conversions on regular group */
|
|
hadc->Instance->CR |= ADC_CR_ADSTP;
|
|
}
|
|
}
|
|
|
|
/* Stop potential conversion on going on injected group */
|
|
if (ConversionGroup != ADC_REGULAR_GROUP)
|
|
{
|
|
/* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0U */
|
|
if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_JADSTART) &&
|
|
HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) )
|
|
{
|
|
/* Stop conversions on injected group */
|
|
hadc->Instance->CR |= ADC_CR_JADSTP;
|
|
}
|
|
}
|
|
|
|
/* Selection of start and stop bits in function of regular or injected group */
|
|
switch(ConversionGroup)
|
|
{
|
|
case ADC_REGULAR_INJECTED_GROUP:
|
|
tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
|
|
break;
|
|
case ADC_INJECTED_GROUP:
|
|
tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
|
|
break;
|
|
/* Case ADC_REGULAR_GROUP */
|
|
default:
|
|
tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
|
|
break;
|
|
}
|
|
|
|
/* Wait for conversion effectively stopped */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != RESET)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return HAL status */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
|
|
/* STM32F302xC || STM32F303xC || STM32F358xx || */
|
|
/* STM32F303x8 || STM32F334x8 || STM32F328xx || */
|
|
/* STM32F301x8 || STM32F302x8 || STM32F318xx */
|
|
|
|
#if defined(STM32F373xC) || defined(STM32F378xx)
|
|
/**
|
|
* @brief Enable the selected ADC.
|
|
* @note Prerequisite condition to use this function: ADC must be disabled
|
|
* and voltage regulator must be enabled (done into HAL_ADC_Init()).
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
__IO uint32_t wait_loop_index = 0U;
|
|
|
|
/* ADC enable and wait for ADC ready (in case of ADC is disabled or */
|
|
/* enabling phase not yet completed: flag ADC ready not yet set). */
|
|
/* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
|
|
/* causes: ADC clock not running, ...). */
|
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
/* Enable the Peripheral */
|
|
__HAL_ADC_ENABLE(hadc);
|
|
|
|
/* Delay for ADC stabilization time */
|
|
/* Compute number of CPU cycles to wait for */
|
|
wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
|
|
while(wait_loop_index != 0U)
|
|
{
|
|
wait_loop_index--;
|
|
}
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for ADC effectively enabled */
|
|
while(ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(ADC_IS_ENABLE(hadc) == RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hadc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return HAL status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Stop ADC conversion and disable the selected ADC
|
|
* @param hadc ADC handle
|
|
* @retval HAL status.
|
|
*/
|
|
static HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef* hadc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Verification if ADC is not already disabled: */
|
|
if (ADC_IS_ENABLE(hadc) != RESET)
|
|
{
|
|
/* Disable the ADC peripheral */
|
|
__HAL_ADC_DISABLE(hadc);
|
|
|
|
/* Get tick count */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait for ADC effectively disabled */
|
|
while(ADC_IS_ENABLE(hadc) != RESET)
|
|
{
|
|
if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
|
|
{
|
|
/* New check to avoid false timeout detection in case of preemption */
|
|
if(ADC_IS_ENABLE(hadc) != RESET)
|
|
{
|
|
/* Update ADC state machine to error */
|
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
|
|
/* Set ADC error code to ADC IP internal error */
|
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return HAL status */
|
|
return HAL_OK;
|
|
}
|
|
#endif /* STM32F373xC || STM32F378xx */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_ADC_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|