adbmsFunctionTest/Core/Src/ADBMS_LL_Driver.c

387 lines
10 KiB
C

/*
* ADBMS_LL_Driver.c
*
* Created on: 05.06.2022
* Author: max
*/
#include "ADBMS_LL_Driver.h"
#include <stdbool.h>
#define INITIAL_COMMAND_PEC 0x0010
#define INITIAL_DATA_PEC 0x0010
#define ADBMS_SPI_TIMEOUT 100 // Timeout in ms
#warning ask about the timeout value
SPI_HandleTypeDef* adbmsspi;
uint8 adbmsDriverInit(SPI_HandleTypeDef* hspi) {
mcuAdbmsCSLow();
HAL_Delay(1);
mcuAdbmsCSHigh();
adbmsspi = hspi;
return 0;
}
//command PEC calculation
//CRC-15
//x^15 + x^14 + x^10 + x^8 + x^7 + x^4 + x^3 + 1
uint8 calculateCommandPEC(uint8_t* data, uint8_t datalen) {
uint16 currentpec = INITIAL_COMMAND_PEC;
if (datalen >= 3) {
for (int i = 0; i < (datalen - 2); i++) {
for (int n = 0; n < 8; n++) {
uint8 din = data[i] << (n);
currentpec = updateCommandPEC(currentpec, din);
}
}
data[datalen - 2] = (currentpec >> 7) & 0xFF;
data[datalen - 1] = (currentpec << 1) & 0xFF;
return 0;
} else {
return 1;
}
}
uint8 checkCommandPEC(uint8* data, uint8 datalen) {
if (datalen <= 3) {
return 255;
}
uint16 currentpec = INITIAL_COMMAND_PEC;
for (int i = 0; i < (datalen - 2); i++) {
for (int n = 0; n < 8; n++) {
uint8 din = data[i] << (n);
currentpec = updateCommandPEC(currentpec, din);
}
}
uint8 pechigh = (currentpec >> 7) & 0xFF;
uint8 peclow = (currentpec << 1) & 0xFF;
if ((pechigh == data[datalen - 2]) && (peclow == data[datalen - 1])) {
return 0;
}
return 1;
}
uint16 updateCommandPEC(uint16 currentPEC, uint8 din) {
din = (din >> 7) & 0x01;
uint8 in0 = din ^ ((currentPEC >> 14) & 0x01);
uint8 in3 = in0 ^ ((currentPEC >> 2) & 0x01);
uint8 in4 = in0 ^ ((currentPEC >> 3) & 0x01);
uint8 in7 = in0 ^ ((currentPEC >> 6) & 0x01);
uint8 in8 = in0 ^ ((currentPEC >> 7) & 0x01);
uint8 in10 = in0 ^ ((currentPEC >> 9) & 0x01);
uint8 in14 = in0 ^ ((currentPEC >> 13) & 0x01);
uint16 newPEC = 0;
newPEC |= in14 << 14;
newPEC |= (currentPEC & (0x01 << 12)) << 1;
newPEC |= (currentPEC & (0x01 << 11)) << 1;
newPEC |= (currentPEC & (0x01 << 10)) << 1;
newPEC |= in10 << 10;
newPEC |= (currentPEC & (0x01 << 8)) << 1;
newPEC |= in8 << 8;
newPEC |= in7 << 7;
newPEC |= (currentPEC & (0x01 << 5)) << 1;
newPEC |= (currentPEC & (0x01 << 4)) << 1;
newPEC |= in4 << 4;
newPEC |= in3 << 3;
newPEC |= (currentPEC & (0x01 << 1)) << 1;
newPEC |= (currentPEC & (0x01)) << 1;
newPEC |= in0;
return newPEC;
}
//data PEC calculation
//CRC-10
//x^10 + x^7 + x^3 + x^2 + x + 1
uint16_t pec10_calc(bool rx_cmd, int len, uint8_t* data) {
uint16_t remainder = 16; /* PEC_SEED; 0000010000 */
uint16_t polynom = 0x8F; /* x10 + x7 + x3 + x2 + x + 1 <- the CRC15 polynomial
100 1000 1111 48F */
/* Perform modulo-2 division, a byte at a time. */
for (uint8_t pbyte = 0; pbyte < len; ++pbyte) {
/* Bring the next byte into the remainder. */
remainder ^= (uint16_t)(data[pbyte] << 2);
/* Perform modulo-2 division, a bit at a time.*/
for (uint8_t bit_ = 8; bit_ > 0; --bit_) {
/* Try to divide the current data bit. */
if ((remainder & 0x200) >
0) // equivalent to remainder & 2^14 simply check for MSB
{
remainder = (uint16_t)((remainder << 1));
remainder = (uint16_t)(remainder ^ polynom);
} else {
remainder = (uint16_t)(remainder << 1);
}
}
}
if (rx_cmd == true) {
remainder ^= (uint16_t)((data[len] & 0xFC) << 2);
/* Perform modulo-2 division, a bit at a time */
for (uint8_t bit_ = 6; bit_ > 0; --bit_) {
/* Try to divide the current data bit */
if ((remainder & 0x200) >
0) // equivalent to remainder & 2^14 simply check for MSB
{
remainder = (uint16_t)((remainder << 1));
remainder = (uint16_t)(remainder ^ polynom);
} else {
remainder = (uint16_t)((remainder << 1));
}
}
}
return ((uint16_t)(remainder & 0x3FF));
}
typedef uint16_t crc;
crc F_CRC_CalculaCheckSum(uint8_t const AF_Datos[], uint16_t VF_nBytes);
uint8 calculateDataPEC(uint8_t* data, uint8_t datalen) {
if (datalen >= 3) {
crc currentpec = pec10_calc(true, datalen - 2, data) & 0x3FF; // mask to 10 bits
// memory layout is [[zeroes], PEC[9:8]], [PEC[7:0]]
data[datalen - 2] = (currentpec >> 8) & 0xFF;
data[datalen - 1] = currentpec & 0xFF;
volatile uint8 result = pec10_calc(true, datalen, data);
return 0;
} else {
return 1;
}
}
uint8 checkDataPEC(uint8* data, uint8 len) {
if (len <= 2) {
return 255;
}
crc currentpec = F_CRC_CalculaCheckSum(data, len);
return (currentpec == 0) ? 0 : 1;
}
static crc F_CRC_ObtenValorDeTabla(uint8_t VP_Pos_Tabla) {
crc VP_CRCTableValue = 0;
uint8_t VP_Pos_bit = 0;
VP_CRCTableValue = ((crc)(VP_Pos_Tabla)) << (10 - 8);
for (VP_Pos_bit = 0; VP_Pos_bit < 8; VP_Pos_bit++) {
if (VP_CRCTableValue & (((crc)1) << (10 - 1))) {
VP_CRCTableValue = (VP_CRCTableValue << 1) ^ 0x8F;
} else {
VP_CRCTableValue = (VP_CRCTableValue << 1);
}
}
return ((VP_CRCTableValue));
}
crc F_CRC_CalculaCheckSum(uint8_t const AF_Datos[], uint16_t VF_nBytes) {
crc VP_CRCTableValue = 16;
int16_t VP_bytes = 0;
for (VP_bytes = 0; VP_bytes < VF_nBytes; VP_bytes++) {
VP_CRCTableValue = (VP_CRCTableValue << 8) ^
F_CRC_ObtenValorDeTabla(
((uint8_t)((VP_CRCTableValue >> (10 - 8)) & 0xFF)) ^
AF_Datos[VP_bytes]);
}
if ((8 * sizeof(crc)) > 10) {
VP_CRCTableValue = VP_CRCTableValue & ((((crc)(1)) << 10) - 1);
}
return (VP_CRCTableValue ^ 0x0000);
}
uint16 updateDataPEC(uint16 currentPEC, uint8 din) {
din = (din >> 7) & 0x01;
uint8 in0 = din ^ ((currentPEC >> 9) & 0x01);
uint8 in2 = in0 ^ ((currentPEC >> 1) & 0x01);
uint8 in3 = in0 ^ ((currentPEC >> 2) & 0x01);
uint8 in7 = in0 ^ ((currentPEC >> 6) & 0x01);
uint16 newPEC = 0;
newPEC |= (currentPEC & (0x01 << 8)) << 1;
newPEC |= (currentPEC & (0x01 << 7)) << 1;
newPEC |= in7 << 7;
newPEC |= (currentPEC & (0x01 << 5)) << 1;
newPEC |= (currentPEC & (0x01 << 4)) << 1;
newPEC |= in3 << 3;
newPEC |= in2 << 2;
newPEC |= (currentPEC & (0x01)) << 1;
newPEC |= in0;
return newPEC;
}
uint8 writeCMD(uint16 command, uint8* args, uint8 arglen) {
uint8 ret;
if (arglen > 0) {
uint8 buffer[6 + arglen]; //command + PEC (2 bytes) + data + DPEC (2 bytes)
buffer[0] = (command >> 8) & 0xFF;
buffer[1] = (command) & 0xFF;
calculateCommandPEC(buffer, 4);
for (uint8 i = 0; i < arglen; i++) {
buffer[4 + i] = args[i];
}
calculateDataPEC(&buffer[4], arglen + 2); //DPEC is calculated over the data, not the command, and placed at the end of the data
mcuAdbmsCSLow();
ret = mcuSPITransmit(buffer, 6 + arglen);
mcuAdbmsCSHigh();
} else {
uint8 buffer[4];
buffer[0] = (command >> 8) & 0xFF;
buffer[1] = (command) & 0xFF;
calculateCommandPEC(buffer, 4);
mcuAdbmsCSLow();
ret = mcuSPITransmit(buffer, 4);
mcuAdbmsCSHigh();
}
return ret;
}
uint8 writeCMD_I2C(uint16 command, uint16_t waitTime, uint8* args, uint8 arglen) {
uint8 ret;
if (arglen > 0) {
uint8 buffer[6 + arglen]; //command + PEC (2 bytes) + data + DPEC (2 bytes)
buffer[0] = (command >> 8) & 0xFF;
buffer[1] = (command) & 0xFF;
calculateCommandPEC(buffer, 4);
for (uint8 i = 0; i < arglen; i++) {
buffer[4 + i] = args[i];
}
calculateDataPEC(&buffer[4], arglen + 2); //DPEC is calculated over the data, not the command, and placed at the end of the data
mcuAdbmsCSLow();
ret = mcuSPITransmit(buffer, 6 + arglen);
mcuAdbmsCSHigh();
} else {
uint8 buffer[4];
buffer[0] = (command >> 8) & 0xFF;
buffer[1] = (command) & 0xFF;
calculateCommandPEC(buffer, 4);
mcuAdbmsCSLow();
ret = mcuSPITransmit(buffer, 4);
// HAL_Delay(1);
for (int i=0; i<64000 * waitTime; i++){
__ASM volatile ("NOP");
}
mcuAdbmsCSHigh();
}
return ret;
}
uint8 readCMD(uint16 command, uint8* buffer, uint8 buflen) {
uint8 txbuffer[6 + buflen];
uint8 rxbuffer[6 + buflen];
txbuffer[0] = (command >> 8) & 0xFF;
txbuffer[1] = (command)&0xFF;
calculateCommandPEC(txbuffer, 4);
mcuAdbmsCSLow();
uint8 status = mcuSPITransmitReceive(rxbuffer, txbuffer, 6 + buflen);
mcuAdbmsCSHigh();
if (status != 0) {
return status;
}
for (uint8 i = 0; i < buflen; i++) {
buffer[i] = rxbuffer[i + 4];
}
[[maybe_unused]] uint8 commandCounter = rxbuffer[sizeof(rxbuffer) - 2] & 0xFC; //command counter is bits 7-2
//TODO: check command counter?
return checkDataPEC(&rxbuffer[4], buflen + 2);
}
//check poll command - no data PEC sent back
uint8 pollCMD(uint16 command) {
uint8 txbuffer[5] = {};
uint8 rxbuffer[5] = {};
txbuffer[0] = (command >> 8) & 0xFF;
txbuffer[1] = (command)&0xFF;
calculateCommandPEC(txbuffer, 4);
mcuAdbmsCSLow();
uint8 status = mcuSPITransmitReceive(rxbuffer, txbuffer, 5);
mcuAdbmsCSHigh();
if (status != 0) {
return status;
}
return rxbuffer[4]; //last byte will be poll response
}
void mcuAdbmsCSLow() {
HAL_GPIO_WritePin(CSB_GPIO_Port, CSB_Pin, GPIO_PIN_RESET);
}
void mcuAdbmsCSHigh() {
HAL_GPIO_WritePin(CSB_GPIO_Port, CSB_Pin, GPIO_PIN_SET);
}
uint8 mcuSPITransmit(uint8* buffer, uint8 buffersize) {
HAL_StatusTypeDef status;
uint8 rxbuf[buffersize];
status = HAL_SPI_TransmitReceive(adbmsspi, buffer, rxbuf, buffersize,
ADBMS_SPI_TIMEOUT);
__HAL_SPI_CLEAR_OVRFLAG(adbmsspi);
return status;
}
uint8 mcuSPIReceive(uint8* buffer, uint8 buffersize) {
HAL_StatusTypeDef status;
status = HAL_SPI_Receive(adbmsspi, buffer, buffersize, ADBMS_SPI_TIMEOUT);
return status;
}
uint8 mcuSPITransmitReceive(uint8* rxbuffer, uint8* txbuffer,
uint8 buffersize) {
HAL_StatusTypeDef status;
status = HAL_SPI_TransmitReceive(adbmsspi, txbuffer, rxbuffer, buffersize,
ADBMS_SPI_TIMEOUT);
return status;
}
inline void mcuDelay(uint16 delay) { HAL_Delay(delay); }