fixed folder structure, added v0 KiCad

This commit is contained in:
2024-12-17 17:10:30 +01:00
parent 044fb7c661
commit ff59809915
241 changed files with 429553 additions and 0 deletions

View File

@ -0,0 +1,384 @@
/**
* @file HTPA_32x32d.c
* @brief Library for HTPA 32x32d infrared array sensor
* @author Tim-Erik Düntzsch t.duentzsch@fasttube.de
*
* @date 08.03.2024 - successful readout of block 3 top half and conversion factors
*
* @test eeprom readout and temperature conversion
*
* @version 0.7
*/
#include <stdbool.h>
#include <math.h>
#include "main.h"
#include "HTPA_32x32d.h"
#include "HTPA_lookuptable_short-300degC.h"
// I2C address
#define HTPA_SENSOR_ADDRESS 0x1A
#define HTPA_EEPROM_ADDRESS 0x50
// Sensor configuration registers (write only)
#define HTPA_SENSOR_CONFIG 0x01 // Configuration register
#define HTPA_SENSOR_TRIM_1 0x03 // Amplification and ADC resolution
#define HTPA_SENSOR_TRIM_2 0x04 // Bias current of Top ADC
#define HTPA_SENSOR_TRIM_3 0x05 // Bias current of Bot ADC
#define HTPA_SENSOR_TRIM_4 0x06 // Clock frequency
#define HTPA_SENSOR_TRIM_5 0x07 // Common mode voltage preamplifier top
#define HTPA_SENSOR_TRIM_6 0x08 // Common mode voltage preamplifier bot
#define HTPA_SENSOR_TRIM_7 0x09 // Internal pull-ups SDA, SCL
// Sensor read only registers
#define HTPA_SENSOR_STATUS 0x02 // Status register
#define HTPA_SENSOR_READTOP 0x0A // Read top half
#define HTPA_SENSOR_READBOT 0x0B // Read bot half
// EEPROM addresses
#define HTPA_EEPROM_VDDCOMPGRAD 0x0340 // Start address for vddcompgrad[i][j]
#define HTPA_EEPROM_VDDCOMPOFF 0x0540 // Start address for vddcompoff[i][j]
#define HTPA_EEPROM_THGRAD 0x0A40 // Start address for thgrad[i][j] (top, block3, pixel 384 -> 0x0740 + 2*384 = 0x0A40
#define HTPA_EEPROM_THOFFSET 0x1240 // Start address for thoffset[i][j] (top, block3, pixel 384 -> 0x0F40 + 2*384 = 0x1240
#define HTPA_EEPROM_PI 0x1A40 // Start address for pij[i][j] (top, block3, pixel 384 -> 0x1740 + 2*384 = 0x1A40
#define HTPA_ROWSELECTION 3u // select which row of block 3 is used for temperature calculation (0-3)
#define HTPA_CUSTOM_EPSILON 84u
// I2C transmit delay
#define HTPA_I2C_MAX_DELAY 0xFF
I2C_HandleTypeDef* htpa_hi2c; // pointer to i2c handle
// EEPROM data:
uint8_t gradscale, vddscgrad, vddscoff, epsilon, arraytype, nrofdefpix;
int8_t globaloff;
uint16_t vddth1, vddth2, ptatth1, ptatth2, globalgain, tablenumber;
uint16_t pij[32];
int16_t thgrad[32];
int16_t thoffset[32];
int16_t vddcompgrad[32];
int16_t vddcompoff[32];
float pixcmin, pixcmax, ptatgr, ptatoff;
// Sensor data:
HTPA_Status htpa_statusReg;
uint8_t data_topBlock[258];
uint8_t elOffset_topBlock[258];
uint16_t vdd_topBlock, ptat_topBlock;
uint16_t pixel_topBlock[32];
uint16_t elOffset[32];
// Calculated values:
uint32_t gradscale_div, vddscgrad_div, vddscoff_div;
int32_t pixcij[32]; // sensitivity coefficients per pixel (needed for 11.5)
int32_t vij_comp[32]; // thermal offset compensated (11.2)
int32_t vij_comp_s[32]; // electrical offset compensated (11.3)
int32_t vij_vddcomp[32]; // vdd compensated (11.4)
int32_t vij_pixc[32]; // sensitivity coefficients applied (11.5)
uint32_t temp_pix[32]; // final pixel temperature in dK (11.7)
float ambient_temperature;
/**
* @brief Initialization of HTPA Sensor
*
* Sets the wakeup bit in the status register and writes the desired sensor
* configuration to the respective registers.
* Afterwards the sensor is in idle and ready for conversion.
*
* @param *hi2c: Pointer to I2C Handle
*/
void HTPA_Init(I2C_HandleTypeDef *hi2c){
htpa_hi2c = hi2c;
// I2C initialized on 400kbit Fast Mode
/*
* Read EEPROM calibration values
* (see datasheet Figure 13)
*/
uint8_t eeprom_float[4] = {0};
eeprom_float[0] = HTPA_ReadEEPROM_byte(0x0000);
eeprom_float[1] = HTPA_ReadEEPROM_byte(0x0001);
eeprom_float[2] = HTPA_ReadEEPROM_byte(0x0002);
eeprom_float[3] = HTPA_ReadEEPROM_byte(0x0003);
pixcmin = *(float*)eeprom_float;
eeprom_float[0] = HTPA_ReadEEPROM_byte(0x0004);
eeprom_float[1] = HTPA_ReadEEPROM_byte(0x0005);
eeprom_float[2] = HTPA_ReadEEPROM_byte(0x0006);
eeprom_float[3] = HTPA_ReadEEPROM_byte(0x0007);
pixcmax = *(float*)eeprom_float;
gradscale = HTPA_ReadEEPROM_byte(0x0008);
tablenumber = HTPA_ReadEEPROM_byte(0x000C) << 8 | HTPA_ReadEEPROM_byte(0x000B);
epsilon = HTPA_ReadEEPROM_byte(0x000D);
arraytype = HTPA_ReadEEPROM_byte(0x0022);
vddth1 = HTPA_ReadEEPROM_byte(0x0027) << 8 | HTPA_ReadEEPROM_byte(0x0026);
vddth2 = HTPA_ReadEEPROM_byte(0x0029) << 8 | HTPA_ReadEEPROM_byte(0x0028);
eeprom_float[0] = HTPA_ReadEEPROM_byte(0x0034);
eeprom_float[1] = HTPA_ReadEEPROM_byte(0x0035);
eeprom_float[2] = HTPA_ReadEEPROM_byte(0x0036);
eeprom_float[3] = HTPA_ReadEEPROM_byte(0x0037);
ptatgr = *(float*)eeprom_float;
eeprom_float[0] = HTPA_ReadEEPROM_byte(0x0038);
eeprom_float[1] = HTPA_ReadEEPROM_byte(0x0039);
eeprom_float[2] = HTPA_ReadEEPROM_byte(0x003A);
eeprom_float[3] = HTPA_ReadEEPROM_byte(0x003B);
ptatoff = *(float*)eeprom_float;
ptatth1 = HTPA_ReadEEPROM_byte(0x003D) << 8 | HTPA_ReadEEPROM_byte(0x003C);
ptatth2 = HTPA_ReadEEPROM_byte(0x003F) << 8 | HTPA_ReadEEPROM_byte(0x003E);
vddscgrad = HTPA_ReadEEPROM_byte(0x004E);
vddscoff = HTPA_ReadEEPROM_byte(0x004F);
globaloff = HTPA_ReadEEPROM_byte(0x0054);
globalgain = HTPA_ReadEEPROM_byte(0x0056) << 8 | HTPA_ReadEEPROM_byte(0x0055);
nrofdefpix = HTPA_ReadEEPROM_byte(0x007F);
for(uint8_t i = 0; i < 32; i++) {
// start at top half, row 4
vddcompgrad[i] = HTPA_ReadEEPROM_byte(HTPA_EEPROM_VDDCOMPGRAD + HTPA_ROWSELECTION * 64 + 2 * i + 1) << 8 | HTPA_ReadEEPROM_byte(HTPA_EEPROM_VDDCOMPGRAD + HTPA_ROWSELECTION * 64 + 2 * i);
// ignore bottom half
}
for(uint8_t i = 0; i < 32; i++) {
// start at top half, row 4
vddcompoff[i] = HTPA_ReadEEPROM_byte(HTPA_EEPROM_VDDCOMPOFF + HTPA_ROWSELECTION * 64 + 2 * i + 1) << 8 | HTPA_ReadEEPROM_byte(HTPA_EEPROM_VDDCOMPOFF + HTPA_ROWSELECTION * 64 + 2 * i);
// ignore bottom half
}
for(uint8_t i = 0; i < 32; i++) {
// start at block 3, row 4 (pixel 480)
thgrad[i] = HTPA_ReadEEPROM_byte(HTPA_EEPROM_THGRAD + HTPA_ROWSELECTION * 64 + 2 * i + 1) << 8 | HTPA_ReadEEPROM_byte(HTPA_EEPROM_THGRAD + HTPA_ROWSELECTION * 64 + 2 * i);
// ignore bottom half
}
for(uint8_t i = 0; i < 32; i++) {
// start at block 3, row 4 (pixel 480)
thoffset[i] = HTPA_ReadEEPROM_byte(HTPA_EEPROM_THOFFSET + HTPA_ROWSELECTION * 64 + 2 * i + 1) << 8 | HTPA_ReadEEPROM_byte(HTPA_EEPROM_THOFFSET + HTPA_ROWSELECTION * 64 + 2 * i);
// ignore bottom half
}
for(uint8_t i = 0; i < 32; i++) {
// start at block 3, row 4 (pixel 480)
pij[i] = HTPA_ReadEEPROM_byte(HTPA_EEPROM_PI + HTPA_ROWSELECTION * 64 + 2 * i + 1) << 8 | HTPA_ReadEEPROM_byte(HTPA_EEPROM_PI + HTPA_ROWSELECTION * 64 + 2 * i);
// ignore bottom half
}
/* Set I2C to Fast Mode Plus (1Mbit) for sensor readout: */
if (HAL_I2C_DeInit(htpa_hi2c) != HAL_OK)
{
Error_Handler();
}
htpa_hi2c->Init.Timing = 0x00000107;
if (HAL_I2C_Init(htpa_hi2c) != HAL_OK)
{
Error_Handler();
}
__HAL_SYSCFG_FASTMODEPLUS_ENABLE(I2C_FASTMODEPLUS_I2C1);
HAL_Delay(100);
/*
* Write sensor calibration registers
*/
HTPA_WriteRegister(HTPA_SENSOR_CONFIG, 0x01); // wakeup
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_1, 0x0C); // bit 5,4 = 00 -> amplification = 0, bit 3-0 = 1100 -> 16bit ADC-Resolution (4 + m=12)
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_2, 0x0C);
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_3, 0x0C);
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_4, 0x14); // clock frequency set to 0x14 -> 4.75MHz -> time for quarter frame: ~27ms
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_5, 0x0C);
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_6, 0x0C);
HAL_Delay(10);
HTPA_WriteRegister(HTPA_SENSOR_TRIM_7, 0x88);
HAL_Delay(10);
//HTPA_WriteRegister(HTPA_SENSOR_CONFIG, 0x09); // start sensor
//HAL_Delay(10);
/*
* Calculations
*/
//gradscale_div = HTPA_calcPowerTwo(gradscale);
gradscale_div = HTPA_calcPowerTwo(gradscale);
vddscgrad_div = HTPA_calcPowerTwo(vddscgrad);
vddscoff_div = HTPA_calcPowerTwo(vddscoff);
// calculate sensitivity coefficients: (datasheet 11.5)
for(uint8_t i = 0; i < 32; i++) {
pixcij[i] = (int32_t)pixcmax - (int32_t)pixcmin;
pixcij[i] = pixcij[i] / 65535;
pixcij[i] = pixcij[i] * pij[i];
pixcij[i] = pixcij[i] + pixcmin;
pixcij[i] = pixcij[i] * 1.0 * HTPA_CUSTOM_EPSILON / 100;
pixcij[i] = pixcij[i] * 1.0 * globalgain / 10000;
}
}
uint32_t HTPA_calcPowerTwo(uint8_t power) {
if (power == 0)
return 1;
else if ((power % 2) == 0)
return HTPA_calcPowerTwo(power / 2) * HTPA_calcPowerTwo(power / 2);
else
return 2 * HTPA_calcPowerTwo(power / 2) * HTPA_calcPowerTwo(power / 2);
}
void HTPA_ReadSensor(uint32_t dataArray[32]) {
uint8_t config = 0;
/*
* Read top array half of block3 with PTAT
*/
// write block and vdd/ptat selection to config register:
config |= (3 << 4); // bit 5,4 block 3 selection
config |= 0x09; // bit 3 start | bit 0 wakeup
HTPA_WriteRegister(HTPA_SENSOR_CONFIG, config);
HAL_Delay(30); // conversion around 27ms in standard config
HTPA_GetStatus();
while(htpa_statusReg.eoc != 1) {
HAL_Delay(1);
HTPA_GetStatus();
} // wait until eoc flag is set then read register data
HTPA_ReadRegister(HTPA_SENSOR_READTOP, data_topBlock, 258);
ptat_topBlock = (data_topBlock[0] << 8) | data_topBlock[1];
/*
* Read electrical offset with VDD
*/
config |= 0x04; // bit 2 vdd_meas
config |= 0x02; // bit 1 blind for electrical offset readout (block selection is ignored)
HTPA_WriteRegister(HTPA_SENSOR_CONFIG, config);
HAL_Delay(30); // conversion around 27ms in standard config
while(htpa_statusReg.eoc != 1) {
HAL_Delay(1);
HTPA_GetStatus();
} // wait until eoc flag is set then read register data
HTPA_ReadRegister(HTPA_SENSOR_READTOP, elOffset_topBlock, 258);
vdd_topBlock = (elOffset_topBlock[0] << 8) | elOffset_topBlock[1];
/*
* Sort sensor data and assign to pixels
*/
for(int i=0; i<32; i++) {
/*
pixel_topBlock[0][i] = (data_topBlock[2*i + 2] << 8) | data_topBlock[2*i + 3];
pixel_topBlock[1][i] = (data_topBlock[2*(i+32) + 2] << 8) | data_topBlock[2*(i+32) + 3];
pixel_topBlock[2][i] = (data_topBlock[2*(i+64) + 2] << 8) | data_topBlock[2*(i+64) + 3];
pixel_topBlock[3][i] = (data_topBlock[2*(i+96) + 2] << 8) | data_topBlock[2*(i+96) + 3];
*/
pixel_topBlock[i] = (data_topBlock[2*(i+32*HTPA_ROWSELECTION) + 2] << 8) | data_topBlock[2*(i+32*HTPA_ROWSELECTION) + 3];
/*
elOffset[0][i] = (elOffset_topBlock[2*i + 2] << 8) | elOffset_topBlock[2*i + 3];
elOffset[1][i] = (elOffset_topBlock[2*(i+32) + 2] << 8) | elOffset_topBlock[2*(i+32) + 3];
elOffset[2][i] = (elOffset_topBlock[2*(i+64) + 2] << 8) | elOffset_topBlock[2*(i+64) + 3];
elOffset[3][i] = (elOffset_topBlock[2*(i+96) + 2] << 8) | elOffset_topBlock[2*(i+96) + 3];
*/
elOffset[i] = (elOffset_topBlock[2*(i+32*HTPA_ROWSELECTION) + 2] << 8) | elOffset_topBlock[2*(i+32*HTPA_ROWSELECTION) + 3];
}
/*
* calculate temperature
*/
int64_t vij_pixc_and_pcscaleval;
int64_t vdd_calc_steps;
uint16_t table_row, table_col;
int32_t vx, vy, ydist, dta;
// 11.1 ambient temperature:
ambient_temperature = ptat_topBlock * ptatgr + ptatoff; // value in dK
// find column of lookup table (ambient temperature)
for(uint8_t i = 0; i < NROFTAELEMENTS; i++) {
if(ambient_temperature > XTATemps[i]) {
table_col = i;
}
}
dta = ambient_temperature - XTATemps[table_col];
ydist = (int32_t)ADEQUIDISTANCE;
for(int i=0; i<32; i++) {
// 11.2 thermal offset:
vij_comp[i] = pixel_topBlock[i] - (thgrad[i] * ptat_topBlock / gradscale_div) - thoffset[i];
// 11.3 electrical offset:
vij_comp_s[i] = vij_comp[i] - elOffset[i];
// 11.4 Vdd compensation:
vdd_calc_steps = vddcompgrad[i] * ptat_topBlock;
vdd_calc_steps = vdd_calc_steps / vddscgrad_div;
vdd_calc_steps = vdd_calc_steps + vddcompoff[i];
vdd_calc_steps = vdd_calc_steps * (vdd_topBlock - vddth1 - ((vddth2 - vddth1) / (ptatth2 - ptatth1)) * (ptat_topBlock - ptatth1));
vdd_calc_steps = vdd_calc_steps / vddscoff_div;
vij_vddcomp[i] = vij_comp_s[i] - vdd_calc_steps;
// 11.5 calculate object temperature
vij_pixc_and_pcscaleval = (int64_t)vij_vddcomp[i] * (int64_t)PCSCALEVAL;
vij_pixc[i] = (int32_t)(vij_pixc_and_pcscaleval / (int64_t)pixcij[i]);
// find temperature in lookup table and do bilinear interpolation
table_row = vij_pixc[i] + TABLEOFFSET;
table_row = table_row >> ADEXPBITS;
vx = ((((int32_t)TempTable[table_row][table_col + 1] - (int32_t)TempTable[table_row][table_col]) * (int32_t)dta) / (int32_t)TAEQUIDISTANCE) + (int32_t)TempTable[table_row][table_col];
vy = ((((int32_t)TempTable[table_row + 1][table_col + 1] - (int32_t)TempTable[table_row + 1][table_col]) * (int32_t)dta) / (int32_t)TAEQUIDISTANCE) + (int32_t)TempTable[table_row + 1][table_col];
temp_pix[i] = (uint32_t)((vy - vx) * ((int32_t)(vij_pixc[i] + TABLEOFFSET) - (int32_t)YADValues[table_row]) / ydist + (int32_t)vx);
// --- GLOBAL OFFSET ---
temp_pix[i] = temp_pix[i] + globaloff;
dataArray[i] = temp_pix[i] - 2731;
}
}
/**
* @brief Write to selected sensor register
*
* description
*
* @param address: address of register
* @param byte: byte to be written to register
*/
void HTPA_WriteRegister(uint8_t address, uint8_t byte){
HAL_I2C_Mem_Write(htpa_hi2c, (HTPA_SENSOR_ADDRESS << 1), address, I2C_MEMADD_SIZE_8BIT, &byte, 1, HTPA_I2C_MAX_DELAY);
}
/**
* @brief Read from address for specified length
*
* description
*
* @param address: register address
* @param pData: pointer to output data array
* @param length: length of data to be read
*/
void HTPA_ReadRegister(uint8_t address, uint8_t *pData, uint16_t length){
HAL_I2C_Mem_Read(htpa_hi2c, (HTPA_SENSOR_ADDRESS << 1), address, I2C_MEMADD_SIZE_8BIT, pData, length, HTPA_I2C_MAX_DELAY);
}
/**
* @brief Get status of sensor
*
* Reads the sensors status register and stores the information in
* the htpa_statusReg variable
*
*/
void HTPA_GetStatus(void){
uint8_t i2c_readData = 0;
HTPA_ReadRegister(HTPA_SENSOR_STATUS, &i2c_readData, 1);
htpa_statusReg.block = (i2c_readData >> 4) & 0x03;
htpa_statusReg.vdd_meas = (i2c_readData >> 2) & 0x01;
htpa_statusReg.blind = (i2c_readData >> 1) & 0x01;
htpa_statusReg.eoc = i2c_readData & 0x01;
}
/**
* @brief Get status of sensor
*
* Reads the sensors status register and stores the information in
* the htpa_statusReg variable
*
*/
uint8_t HTPA_ReadEEPROM_byte(uint16_t address){
uint8_t data = 0;
HAL_I2C_Mem_Read(htpa_hi2c, (HTPA_EEPROM_ADDRESS << 1), address, I2C_MEMADD_SIZE_16BIT, &data, 1, HTPA_I2C_MAX_DELAY);
return data;
}

329
Software/Core/Src/main.c Normal file
View File

@ -0,0 +1,329 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "HTPA_32x32d.h"
#include "tts.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
I2C_HandleTypeDef hi2c1;
/* USER CODE BEGIN PV */
uint32_t pixelTemps[32];
uint32_t tireTemps[5];
uint32_t systicks = 0;
uint8_t blinkCount = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_CAN_Init(void);
static void MX_I2C1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_CAN_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
HTPA_Init(&hi2c1);
TTS_Init(&hcan);
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
HAL_CAN_Start(&hcan);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
systicks = HAL_GetTick();
if((systicks % 100) <= 1){
if(blinkCount >= 9) {
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
blinkCount = 0;
}
else {
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
blinkCount++;
}
HTPA_ReadSensor(pixelTemps);
TTS_TireZones(pixelTemps,tireTemps);
TTS_SendCAN(tireTemps);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief CAN Initialization Function
* @param None
* @retval None
*/
static void MX_CAN_Init(void)
{
/* USER CODE BEGIN CAN_Init 0 */
/* USER CODE END CAN_Init 0 */
/* USER CODE BEGIN CAN_Init 1 */
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN;
hcan.Init.Prescaler = 2;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_13TQ;
hcan.Init.TimeSeg2 = CAN_BS2_2TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN_Init 2 */
/* USER CODE END CAN_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x0010061A;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED_Pin */
GPIO_InitStruct.Pin = LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_SET);
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@ -0,0 +1,217 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f0xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
/* System interrupt init*/
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/**
* @brief CAN MSP Initialization
* This function configures the hardware resources used in this example
* @param hcan: CAN handle pointer
* @retval None
*/
void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hcan->Instance==CAN)
{
/* USER CODE BEGIN CAN_MspInit 0 */
/* USER CODE END CAN_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_CAN1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**CAN GPIO Configuration
PA11 ------> CAN_RX
PA12 ------> CAN_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF4_CAN;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN CAN_MspInit 1 */
/* USER CODE END CAN_MspInit 1 */
}
}
/**
* @brief CAN MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hcan: CAN handle pointer
* @retval None
*/
void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan)
{
if(hcan->Instance==CAN)
{
/* USER CODE BEGIN CAN_MspDeInit 0 */
/* USER CODE END CAN_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_CAN1_CLK_DISABLE();
/**CAN GPIO Configuration
PA11 ------> CAN_RX
PA12 ------> CAN_TX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_11|GPIO_PIN_12);
/* USER CODE BEGIN CAN_MspDeInit 1 */
/* USER CODE END CAN_MspDeInit 1 */
}
}
/**
* @brief I2C MSP Initialization
* This function configures the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspInit 0 */
/* USER CODE END I2C1_MspInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF1_I2C1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE();
/* USER CODE BEGIN I2C1_MspInit 1 */
/* USER CODE END I2C1_MspInit 1 */
}
}
/**
* @brief I2C MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
{
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspDeInit 0 */
/* USER CODE END I2C1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_I2C1_CLK_DISABLE();
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_7);
/* USER CODE BEGIN I2C1_MspDeInit 1 */
/* USER CODE END I2C1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

View File

@ -0,0 +1,145 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f0xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f0xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M0 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVC_IRQn 0 */
/* USER CODE END SVC_IRQn 0 */
/* USER CODE BEGIN SVC_IRQn 1 */
/* USER CODE END SVC_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32F0xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32f0xx.s). */
/******************************************************************************/
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

View File

@ -0,0 +1,176 @@
/**
******************************************************************************
* @file syscalls.c
* @author Auto-generated by STM32CubeIDE
* @brief STM32CubeIDE Minimal System calls file
*
* For more information about which c-functions
* need which of these lowlevel functions
* please consult the Newlib libc-manual
******************************************************************************
* @attention
*
* Copyright (c) 2020-2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
/* Variables */
extern int __io_putchar(int ch) __attribute__((weak));
extern int __io_getchar(void) __attribute__((weak));
char *__env[1] = { 0 };
char **environ = __env;
/* Functions */
void initialise_monitor_handles()
{
}
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
(void)pid;
(void)sig;
errno = EINVAL;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
*ptr++ = __io_getchar();
}
return len;
}
__attribute__((weak)) int _write(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar(*ptr++);
}
return len;
}
int _close(int file)
{
(void)file;
return -1;
}
int _fstat(int file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _isatty(int file)
{
(void)file;
return 1;
}
int _lseek(int file, int ptr, int dir)
{
(void)file;
(void)ptr;
(void)dir;
return 0;
}
int _open(char *path, int flags, ...)
{
(void)path;
(void)flags;
/* Pretend like we always fail */
return -1;
}
int _wait(int *status)
{
(void)status;
errno = ECHILD;
return -1;
}
int _unlink(char *name)
{
(void)name;
errno = ENOENT;
return -1;
}
int _times(struct tms *buf)
{
(void)buf;
return -1;
}
int _stat(char *file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _link(char *old, char *new)
{
(void)old;
(void)new;
errno = EMLINK;
return -1;
}
int _fork(void)
{
errno = EAGAIN;
return -1;
}
int _execve(char *name, char **argv, char **env)
{
(void)name;
(void)argv;
(void)env;
errno = ENOMEM;
return -1;
}

View File

@ -0,0 +1,79 @@
/**
******************************************************************************
* @file sysmem.c
* @author Generated by STM32CubeIDE
* @brief STM32CubeIDE System Memory calls file
*
* For more information about which C functions
* need which of these lowlevel functions
* please consult the newlib libc manual
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <errno.h>
#include <stdint.h>
/**
* Pointer to the current high watermark of the heap usage
*/
static uint8_t *__sbrk_heap_end = NULL;
/**
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
* and others from the C library
*
* @verbatim
* ############################################################################
* # .data # .bss # newlib heap # MSP stack #
* # # # # Reserved by _Min_Stack_Size #
* ############################################################################
* ^-- RAM start ^-- _end _estack, RAM end --^
* @endverbatim
*
* This implementation starts allocating at the '_end' linker symbol
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
* The implementation considers '_estack' linker symbol to be RAM end
* NOTE: If the MSP stack, at any point during execution, grows larger than the
* reserved size, please increase the '_Min_Stack_Size'.
*
* @param incr Memory size
* @return Pointer to allocated memory
*/
void *_sbrk(ptrdiff_t incr)
{
extern uint8_t _end; /* Symbol defined in the linker script */
extern uint8_t _estack; /* Symbol defined in the linker script */
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
const uint8_t *max_heap = (uint8_t *)stack_limit;
uint8_t *prev_heap_end;
/* Initialize heap end at first call */
if (NULL == __sbrk_heap_end)
{
__sbrk_heap_end = &_end;
}
/* Protect heap from growing into the reserved MSP stack */
if (__sbrk_heap_end + incr > max_heap)
{
errno = ENOMEM;
return (void *)-1;
}
prev_heap_end = __sbrk_heap_end;
__sbrk_heap_end += incr;
return (void *)prev_heap_end;
}

View File

@ -0,0 +1,249 @@
/**
******************************************************************************
* @file system_stm32f0xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M0 Device Peripheral Access Layer System Source File.
*
* 1. This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32f0xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32f0xx_system
* @{
*/
/** @addtogroup STM32F0xx_System_Private_Includes
* @{
*/
#include "stm32f0xx.h"
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_Defines
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz.
This value can be provided and adapted by the user application. */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz.
This value can be provided and adapted by the user application. */
#endif /* HSI_VALUE */
#if !defined (HSI48_VALUE)
#define HSI48_VALUE ((uint32_t)48000000) /*!< Default value of the HSI48 Internal oscillator in Hz.
This value can be provided and adapted by the user application. */
#endif /* HSI48_VALUE */
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 8000000;
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F0xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* @param None
* @retval None
*/
void SystemInit(void)
{
/* NOTE :SystemInit(): This function is called at startup just after reset and
before branch to main program. This call is made inside
the "startup_stm32f0xx.s" file.
User can setups the default system clock (System clock source, PLL Multiplier
and Divider factors, AHB/APBx prescalers and Flash settings).
*/
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* - If SYSCLK source is HSI48, SystemCoreClock will contain the HSI48_VALUE(***)
*
* (*) HSI_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f0xx_hal_conf.h file (its value
* depends on the application requirements), user has to ensure that HSE_VALUE
* is same as the real frequency of the crystal used. Otherwise, this function
* may have wrong result.
*
* (***) HSI48_VALUE is a constant defined in stm32f0xx_hal_conf.h file (default value
* 48 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t tmp = 0, pllmull = 0, pllsource = 0, predivfactor = 0;
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case RCC_CFGR_SWS_HSI: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
case RCC_CFGR_SWS_HSE: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case RCC_CFGR_SWS_PLL: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
pllmull = ( pllmull >> 18) + 2;
predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1;
if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
{
/* HSE used as PLL clock source : SystemCoreClock = HSE/PREDIV * PLLMUL */
SystemCoreClock = (HSE_VALUE/predivfactor) * pllmull;
}
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F091xC) || defined(STM32F098xx)
else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
{
/* HSI48 used as PLL clock source : SystemCoreClock = HSI48/PREDIV * PLLMUL */
SystemCoreClock = (HSI48_VALUE/predivfactor) * pllmull;
}
#endif /* STM32F042x6 || STM32F048xx || STM32F071xB || STM32F072xB || STM32F078xx || STM32F091xC || STM32F098xx */
else
{
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F070x6) \
|| defined(STM32F078xx) || defined(STM32F071xB) || defined(STM32F072xB) \
|| defined(STM32F070xB) || defined(STM32F091xC) || defined(STM32F098xx) || defined(STM32F030xC)
/* HSI used as PLL clock source : SystemCoreClock = HSI/PREDIV * PLLMUL */
SystemCoreClock = (HSI_VALUE/predivfactor) * pllmull;
#else
/* HSI used as PLL clock source : SystemCoreClock = HSI/2 * PLLMUL */
SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
#endif /* STM32F042x6 || STM32F048xx || STM32F070x6 ||
STM32F071xB || STM32F072xB || STM32F078xx || STM32F070xB ||
STM32F091xC || STM32F098xx || STM32F030xC */
}
break;
default: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK clock frequency ----------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/

184
Software/Core/Src/tts.c Normal file
View File

@ -0,0 +1,184 @@
/*
* tts.c
*
* Created on: Jun 28, 2024
* Author: ted
*/
#include "tts.h"
#include "HTPA_32x32d.h"
// CAN Frame:
#define TTS_CANIDSTART 0x701; //
CAN_HandleTypeDef* tts_hcan;
CAN_TxHeaderTypeDef tts_canHeader;
uint8_t tts_canData[8];
uint32_t tts_canMailbox;
// Car / Tire info:
TTS_SensorID tts_sensorid;
TTS_CarID tts_carid;
TTS_TireID tts_tireid;
TTS_TireData tts_tiredb[4];
void TTS_Init(CAN_HandleTypeDef *hcan) {
// initialize values
TTS_LoadTireData();
tts_sensorid = TTS_FL;
tts_carid = FT24;
tts_tireid = OZ7_SLICKS;
// init CAN
tts_hcan = hcan;
// set CAN filter
/*
CAN_FilterTypeDef canfilterconfig;
canfilterconfig.FilterActivation = CAN_FILTER_ENABLE;
canfilterconfig.FilterBank = 0;
canfilterconfig.FilterFIFOAssignment = CAN_FILTER_FIFO0;
canfilterconfig.FilterIdHigh = 0x704<<5;
canfilterconfig.FilterIdLow = 0x700<<5;
canfilterconfig.FilterMaskIdHigh = 0x704<<5;
canfilterconfig.FilterMaskIdLow = 0x700<<5;
canfilterconfig.FilterMode = CAN_FILTERMODE_IDMASK;
canfilterconfig.FilterScale = CAN_FILTERSCALE_32BIT;
HAL_CAN_ConfigFilter(tts_hcan, &canfilterconfig);
*/
// init CAN_Tx Frame
//uint8_t canID = tts_sensorid + TTS_CANIDSTART;
tts_canHeader.IDE = CAN_ID_STD;
tts_canHeader.StdId = 0x701;
tts_canHeader.DLC = 8;
tts_canHeader.RTR = CAN_RTR_DATA;
for(uint8_t i=0; i<8; i++) {
tts_canData[i] = 0xFF;
}
}
void TTS_SendCAN(uint32_t tireZones[5]) {
// Outer left:
tts_canData[0] = tireZones[0] & 0xFF;
tts_canData[1] = (tireZones[0] >> 8) & 0xF;
// Center left:
tts_canData[1] = tts_canData[1] | ((tireZones[1] & 0xF) << 4);
tts_canData[2] = (tireZones[1] >> 4) & 0xFF;
// Center:
tts_canData[3] = tireZones[2] & 0xFF;
tts_canData[4] = (tireZones[2] >> 8) & 0xF;
// Center right:
tts_canData[4] = tts_canData[4] | ((tireZones[3] & 0xF) << 4);
tts_canData[5] = (tireZones[3] >> 4) & 0xFF;
// Center right:
tts_canData[6] = tireZones[4] & 0xFF;
tts_canData[7] = (tireZones[4] >> 8) & 0xF;
// current tire selected:
//tts_canData[7] = tts_canData[7] | ((tts_tireid & 0xF) << 4);
if(HAL_CAN_AddTxMessage(tts_hcan, &tts_canHeader, tts_canData, &tts_canMailbox) != HAL_OK) {
Error_Handler();
}
}
void TTS_TireZones(uint32_t tempArray[32], uint32_t tireTempArray[5]) {
for(uint8_t i = 0; i < 5; i++) {
tireTempArray[i] = 0;
}
uint8_t zoneWidth[5] = {0};
uint8_t tireid = tts_tireid;
for(uint8_t i = 0; i < 32; i++) {
// outer right:
if((i <= tts_tiredb[tts_tireid].outerRightStart) && (i >= tts_tiredb[tts_tireid].outerRightStop)) {
tireTempArray[4] = tireTempArray[4] + tempArray[i];
zoneWidth[4]++;
}
// center right:
if((i <= tts_tiredb[tts_tireid].centerRightStart) && (i >= tts_tiredb[tts_tireid].centerRightStop)) {
tireTempArray[3] = tireTempArray[3] + tempArray[i];
zoneWidth[3]++;
}
// center:
if((i <= tts_tiredb[tts_tireid].centerStart) && (i >= tts_tiredb[tts_tireid].centerStop)) {
tireTempArray[2] = tireTempArray[2] + tempArray[i];
zoneWidth[2]++;
}
// center left:
if((i <= tts_tiredb[tts_tireid].centerLeftStart) && (i >= tts_tiredb[tts_tireid].centerLeftStop)) {
tireTempArray[1] = tireTempArray[1] + tempArray[i];
zoneWidth[1]++;
}
// outer left:
if((i <= tts_tiredb[tts_tireid].outerLeftStart) && (i >= tts_tiredb[tts_tireid].outerLeftStop)) {
tireTempArray[0] = tireTempArray[0] + tempArray[i];
zoneWidth[0]++;
}
}
tireTempArray[4] = tireTempArray[4] / zoneWidth[4];
tireTempArray[3] = tireTempArray[3] / zoneWidth[3];
tireTempArray[2] = tireTempArray[2] / zoneWidth[2];
tireTempArray[1] = tireTempArray[1] / zoneWidth[1];
tireTempArray[0] = tireTempArray[0] / zoneWidth[0];
}
void TTS_LoadTireData(void) {
tts_tiredb[UNKNOWN].id = UNKNOWN;
tts_tiredb[UNKNOWN].epsilon = 84;
tts_tiredb[UNKNOWN].outerLeftStart = 31;
tts_tiredb[UNKNOWN].outerLeftStop = 26;
tts_tiredb[UNKNOWN].centerLeftStart = 25;
tts_tiredb[UNKNOWN].centerLeftStop = 20;
tts_tiredb[UNKNOWN].centerStart = 19;
tts_tiredb[UNKNOWN].centerStop = 12;
tts_tiredb[UNKNOWN].centerRightStart = 11;
tts_tiredb[UNKNOWN].centerRightStop = 6;
tts_tiredb[UNKNOWN].outerRightStart = 5;
tts_tiredb[UNKNOWN].outerRightStop = 0;
tts_tiredb[OZ7_SLICKS].id = OZ7_SLICKS;
tts_tiredb[OZ7_SLICKS].epsilon = 84;
tts_tiredb[OZ7_SLICKS].outerLeftStart = 27;
tts_tiredb[OZ7_SLICKS].outerLeftStop = 25;
tts_tiredb[OZ7_SLICKS].centerLeftStart = 24;
tts_tiredb[OZ7_SLICKS].centerLeftStop = 19;
tts_tiredb[OZ7_SLICKS].centerStart = 18;
tts_tiredb[OZ7_SLICKS].centerStop = 13;
tts_tiredb[OZ7_SLICKS].centerRightStart = 12;
tts_tiredb[OZ7_SLICKS].centerRightStop = 7;
tts_tiredb[OZ7_SLICKS].outerRightStart = 6;
tts_tiredb[OZ7_SLICKS].outerRightStop = 4;
tts_tiredb[OZ7_RAIN].id = OZ7_RAIN;
tts_tiredb[OZ7_RAIN].epsilon = 84;
tts_tiredb[OZ7_RAIN].outerLeftStart = 31;
tts_tiredb[OZ7_RAIN].outerLeftStop = 26;
tts_tiredb[OZ7_RAIN].centerLeftStart = 25;
tts_tiredb[OZ7_RAIN].centerLeftStop = 20;
tts_tiredb[OZ7_RAIN].centerStart = 19;
tts_tiredb[OZ7_RAIN].centerStop = 12;
tts_tiredb[OZ7_RAIN].centerRightStart = 11;
tts_tiredb[OZ7_RAIN].centerRightStop = 6;
tts_tiredb[OZ7_RAIN].outerRightStart = 5;
tts_tiredb[OZ7_RAIN].outerRightStop = 0;
tts_tiredb[JP8_SLICKS].id = JP8_SLICKS;
tts_tiredb[JP8_SLICKS].epsilon = 84;
tts_tiredb[JP8_SLICKS].outerLeftStart = 28;
tts_tiredb[JP8_SLICKS].outerLeftStop = 24;
tts_tiredb[JP8_SLICKS].centerLeftStart = 23;
tts_tiredb[JP8_SLICKS].centerLeftStop = 19;
tts_tiredb[JP8_SLICKS].centerStart = 18;
tts_tiredb[JP8_SLICKS].centerStop = 13;
tts_tiredb[JP8_SLICKS].centerRightStart = 12;
tts_tiredb[JP8_SLICKS].centerRightStop = 8;
tts_tiredb[JP8_SLICKS].outerRightStart = 7;
tts_tiredb[JP8_SLICKS].outerRightStop = 3;
}