PDU_Code/Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_sdadc.c

3032 lines
97 KiB
C

/**
******************************************************************************
* @file stm32f3xx_hal_sdadc.c
* @author MCD Application Team
* @brief This file provides firmware functions to manage the following
* functionalities of the Sigma-Delta Analog to Digital Converter
* (SDADC) peripherals:
* + Initialization and Configuration
* + Regular Channels Configuration
* + Injected channels Configuration
* + Power saving
* + Regular/Injected Channels DMA Configuration
* + Interrupts and flags management
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### SDADC specific features #####
==============================================================================
[..]
(#) 16-bit sigma delta architecture.
(#) Self calibration.
(#) Interrupt generation at the end of calibration, regular/injected conversion
and in case of overrun events.
(#) Single and continuous conversion modes.
(#) External trigger option with configurable polarity for injected conversion.
(#) Multi mode (synchronized another SDADC with SDADC1).
(#) DMA request generation during regular or injected channel conversion.
##### How to use this driver #####
==============================================================================
[..]
*** Initialization ***
======================
[..]
(#) As prerequisite, fill in the HAL_SDADC_MspInit() :
(++) Enable SDADCx clock interface with __SDADCx_CLK_ENABLE().
(++) Configure SDADCx clock divider with HAL_RCCEx_PeriphCLKConfig.
(++) Enable power on SDADC with HAL_PWREx_EnableSDADC().
(++) Enable the clocks for the SDADC GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
(++) Configure these SDADC pins in analog mode using HAL_GPIO_Init().
(++) If interrupt mode is used, enable and configure SDADC global
interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
(++) If DMA mode is used, configure DMA with HAL_DMA_Init and link it
with SDADC handle using __HAL_LINKDMA.
(#) Configure the SDADC low power mode, fast conversion mode, slow clock
mode and SDADC1 reference voltage using the HAL_SDADC_Init() function.
Note: Common reference voltage. is common to all SDADC instances.
(#) Prepare channel configurations (input mode, common mode, gain and
offset) using HAL_SDADC_PrepareChannelConfig and associate channel
with one configuration using HAL_SDADC_AssociateChannelConfig.
*** Calibration ***
============================================
[..]
(#) Start calibration using HAL_SDADC_StartCalibration or
HAL_SDADC_CalibrationStart_IT.
(#) In polling mode, use HAL_SDADC_PollForCalibEvent to detect the end of
calibration.
(#) In interrupt mode, HAL_SDADC_CalibrationCpltCallback will be called at
the end of calibration.
*** Regular channel conversion ***
============================================
[..]
(#) Select trigger for regular conversion using
HAL_SDADC_SelectRegularTrigger.
(#) Select regular channel and enable/disable continuous mode using
HAL_SDADC_ConfigChannel.
(#) Start regular conversion using HAL_SDADC_Start, HAL_SDADC_Start_IT
or HAL_SDADC_Start_DMA.
(#) In polling mode, use HAL_SDADC_PollForConversion to detect the end of
regular conversion.
(#) In interrupt mode, HAL_SDADC_ConvCpltCallback will be called at the
end of regular conversion.
(#) Get value of regular conversion using HAL_SDADC_GetValue.
(#) In DMA mode, HAL_SDADC_ConvHalfCpltCallback and
HAL_SDADC_ConvCpltCallback will be called respectively at the half
transfer and at the transfer complete.
(#) Stop regular conversion using HAL_SDADC_Stop, HAL_SDADC_Stop_IT
or HAL_SDADC_Stop_DMA.
*** Injected channels conversion ***
============================================
[..]
(#) Enable/disable delay on injected conversion using
HAL_SDADC_SelectInjectedDelay.
(#) If external trigger is used for injected conversion, configure this
trigger using HAL_SDADC_SelectInjectedExtTrigger.
(#) Select trigger for injected conversion using
HAL_SDADC_SelectInjectedTrigger.
(#) Select injected channels and enable/disable continuous mode using
HAL_SDADC_InjectedConfigChannel.
(#) Start injected conversion using HAL_SDADC_InjectedStart,
HAL_SDADC_InjectedStart_IT or HAL_SDADC_InjectedStart_DMA.
(#) In polling mode, use HAL_SDADC_PollForInjectedConversion to detect the
end of injected conversion.
(#) In interrupt mode, HAL_SDADC_InjectedConvCpltCallback will be called
at the end of injected conversion.
(#) Get value of injected conversion and corresponding channel using
HAL_SDADC_InjectedGetValue.
(#) In DMA mode, HAL_SDADC_InjectedConvHalfCpltCallback and
HAL_SDADC_InjectedConvCpltCallback will be called respectively at the
half transfer and at the transfer complete.
(#) Stop injected conversion using HAL_SDADC_InjectedStop,
HAL_SDADC_InjectedStop_IT or HAL_SDADC_InjectedStop_DMA.
*** Multi mode regular channels conversions ***
======================================================
[..]
(#) Select type of multimode (SDADC1/SDADC2 or SDADC1/SDADC3) using
HAL_SDADC_MultiModeConfigChannel.
(#) Select software trigger for SDADC1 and synchronized trigger for
SDADC2 (or SDADC3) using HAL_SDADC_SelectRegularTrigger.
(#) Select regular channel for SDADC1 and SDADC2 (or SDADC3) using
HAL_SDADC_ConfigChannel.
(#) Start regular conversion for SDADC2 (or SDADC3) with HAL_SDADC_Start.
(#) Start regular conversion for SDADC1 using HAL_SDADC_Start,
HAL_SDADC_Start_IT or HAL_SDADC_MultiModeStart_DMA.
(#) In polling mode, use HAL_SDADC_PollForConversion to detect the end of
regular conversion for SDADC1.
(#) In interrupt mode, HAL_SDADC_ConvCpltCallback will be called at the
end of regular conversion for SDADC1.
(#) Get value of regular conversions using HAL_SDADC_MultiModeGetValue.
(#) In DMA mode, HAL_SDADC_ConvHalfCpltCallback and
HAL_SDADC_ConvCpltCallback will be called respectively at the half
transfer and at the transfer complete for SDADC1.
(#) Stop regular conversion using HAL_SDADC_Stop, HAL_SDADC_Stop_IT
or HAL_SDADC_MultiModeStop_DMA for SDADC1.
(#) Stop regular conversion using HAL_SDADC_Stop for SDADC2 (or SDADC3).
*** Multi mode injected channels conversions ***
======================================================
[..]
(#) Select type of multimode (SDADC1/SDADC2 or SDADC1/SDADC3) using
HAL_SDADC_InjectedMultiModeConfigChannel.
(#) Select software or external trigger for SDADC1 and synchronized
trigger for SDADC2 (or SDADC3) using HAL_SDADC_SelectInjectedTrigger.
(#) Select injected channels for SDADC1 and SDADC2 (or SDADC3) using
HAL_SDADC_InjectedConfigChannel.
(#) Start injected conversion for SDADC2 (or SDADC3) with
HAL_SDADC_InjectedStart.
(#) Start injected conversion for SDADC1 using HAL_SDADC_InjectedStart,
HAL_SDADC_InjectedStart_IT or HAL_SDADC_InjectedMultiModeStart_DMA.
(#) In polling mode, use HAL_SDADC_InjectedPollForConversion to detect
the end of injected conversion for SDADC1.
(#) In interrupt mode, HAL_SDADC_InjectedConvCpltCallback will be called
at the end of injected conversion for SDADC1.
(#) Get value of injected conversions using
HAL_SDADC_InjectedMultiModeGetValue.
(#) In DMA mode, HAL_SDADC_InjectedConvHalfCpltCallback and
HAL_SDADC_InjectedConvCpltCallback will be called respectively at the
half transfer and at the transfer complete for SDADC1.
(#) Stop injected conversion using HAL_SDADC_InjectedStop,
HAL_SDADC_InjectedStop_IT or HAL_SDADC_InjecteddMultiModeStop_DMA
for SDADC1.
(#) Stop injected conversion using HAL_SDADC_InjectedStop for SDADC2
(or SDADC3).
*** Callback registration ***
=============================================
[..]
The compilation flag USE_HAL_SDADC_REGISTER_CALLBACKS, when set to 1,
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_SDADC_RegisterCallback()
to register an interrupt callback.
[..]
Function HAL_SDADC_RegisterCallback() allows to register following callbacks:
(+) ConvHalfCpltCallback : callback for half regular conversion complete.
(+) ConvCpltCallback : callback for regular conversion complete
(+) InjectedConvHalfCpltCallback : callback for half injected conversion complete
(+) InjectedConvCpltCallback : callback for injected conversion complete
(+) CalibrationCpltCallback : callback for calibration
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
Use function HAL_SDADC_UnRegisterCallback to reset a callback to the default
weak function.
[..]
HAL_SDADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) ConvHalfCpltCallback : callback for half regular conversion complete.
(+) ConvCpltCallback : callback for regular conversion complete
(+) InjectedConvHalfCpltCallback : callback for half injected conversion complete
(+) InjectedConvCpltCallback : callback for injected conversion complete
(+) CalibrationCpltCallback : callback for calibration
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
[..]
By default, after the HAL_SDADC_Init() and when the state is HAL_SDADC_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_SDADC_ConvCpltCallback(), HAL_SDADC_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_SDADC_Init()/ HAL_SDADC_DeInit() only when
these callbacks are null (not registered beforehand).
[..]
If MspInit or MspDeInit are not null, the HAL_SDADC_Init()/ HAL_SDADC_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_SDADC_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_SDADC_STATE_READY or HAL_SDADC_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
[..]
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_SDADC_RegisterCallback() before calling HAL_SDADC_DeInit()
or HAL_SDADC_Init() function.
[..]
When the compilation flag USE_HAL_SDADC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"
/** @addtogroup STM32F3xx_HAL_Driver
* @{
*/
#ifdef HAL_SDADC_MODULE_ENABLED
#if defined(SDADC1) || defined(SDADC2) || defined(SDADC3)
/** @defgroup SDADC SDADC
* @brief SDADC HAL driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup SDADC_Private_Define SDADC Private Define
* @{
*/
#define SDADC_TIMEOUT 200UL
#define SDADC_CONFREG_OFFSET 0x00000020UL
#define SDADC_JDATAR_CH_OFFSET 24UL
#define SDADC_MSB_MASK 0xFFFF0000UL
#define SDADC_LSB_MASK 0x0000FFFFUL
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup SDADC_Private_Functions SDADC Private Functions
* @{
*/
static HAL_StatusTypeDef SDADC_EnterInitMode(SDADC_HandleTypeDef* hsdadc);
static void SDADC_ExitInitMode(SDADC_HandleTypeDef* hsdadc);
static uint32_t SDADC_GetInjChannelsNbr(uint32_t Channels);
static HAL_StatusTypeDef SDADC_RegConvStart(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_RegConvStop(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_InjConvStart(SDADC_HandleTypeDef* hsdadc);
static HAL_StatusTypeDef SDADC_InjConvStop(SDADC_HandleTypeDef* hsdadc);
static void SDADC_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma);
static void SDADC_DMARegularConvCplt(DMA_HandleTypeDef *hdma);
static void SDADC_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma);
static void SDADC_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma);
static void SDADC_DMAError(DMA_HandleTypeDef *hdma);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup SDADC_Exported_Functions SDADC Exported Functions
* @{
*/
/** @defgroup SDADC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the SDADC.
(+) De-initialize the SDADC.
@endverbatim
* @{
*/
/**
* @brief Initializes the SDADC according to the specified
* parameters in the SDADC_InitTypeDef structure.
* @note If multiple SDADC are used, please configure first SDADC1 to set
* the common reference voltage.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_SDADC_Init(SDADC_HandleTypeDef* hsdadc)
{
/* Check SDADC handle */
if(hsdadc == NULL)
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_LOWPOWER_MODE(hsdadc->Init.IdleLowPowerMode));
assert_param(IS_SDADC_FAST_CONV_MODE(hsdadc->Init.FastConversionMode));
assert_param(IS_SDADC_SLOW_CLOCK_MODE(hsdadc->Init.SlowClockMode));
assert_param(IS_SDADC_VREF(hsdadc->Init.ReferenceVoltage));
/* Initialize SDADC variables with default values */
hsdadc->RegularContMode = SDADC_CONTINUOUS_CONV_OFF;
hsdadc->InjectedContMode = SDADC_CONTINUOUS_CONV_OFF;
hsdadc->InjectedChannelsNbr = 1U;
hsdadc->InjConvRemaining = 1U;
hsdadc->RegularTrigger = SDADC_SOFTWARE_TRIGGER;
hsdadc->InjectedTrigger = SDADC_SOFTWARE_TRIGGER;
hsdadc->ExtTriggerEdge = SDADC_EXT_TRIG_RISING_EDGE;
hsdadc->RegularMultimode = SDADC_MULTIMODE_SDADC1_SDADC2;
hsdadc->InjectedMultimode = SDADC_MULTIMODE_SDADC1_SDADC2;
hsdadc->ErrorCode = SDADC_ERROR_NONE;
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
if(hsdadc->State == HAL_SDADC_STATE_RESET)
{
/* Init the SDADC Callback settings */
hsdadc->ConvHalfCpltCallback = HAL_SDADC_ConvHalfCpltCallback;
hsdadc->ConvCpltCallback = HAL_SDADC_ConvCpltCallback;
hsdadc->InjectedConvHalfCpltCallback = HAL_SDADC_InjectedConvHalfCpltCallback;
hsdadc->InjectedConvCpltCallback = HAL_SDADC_InjectedConvCpltCallback;
hsdadc->CalibrationCpltCallback = HAL_SDADC_CalibrationCpltCallback;
hsdadc->ErrorCallback = HAL_SDADC_ErrorCallback;
}
if (hsdadc->MspInitCallback == NULL)
{
hsdadc->MspInitCallback = HAL_SDADC_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hsdadc->MspInitCallback(hsdadc);
#else
/* Init the low level hardware */
HAL_SDADC_MspInit(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Set idle low power and slow clock modes */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_SBI|SDADC_CR1_PDI|SDADC_CR1_SLOWCK);
hsdadc->Instance->CR1 |= (hsdadc->Init.IdleLowPowerMode | \
hsdadc->Init.SlowClockMode);
/* Set fast conversion mode */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_FAST);
hsdadc->Instance->CR2 |= hsdadc->Init.FastConversionMode;
/* Set reference voltage common to all SDADC instances */
/* Update this parameter only if needed to avoid unnecessary settling time */
if((SDADC1->CR1 & SDADC_CR1_REFV) != hsdadc->Init.ReferenceVoltage)
{
/* Voltage reference bits are common to all SADC instances but are */
/* present in SDADC1 register. */
SDADC1->CR1 &= ~(SDADC_CR1_REFV);
SDADC1->CR1 |= hsdadc->Init.ReferenceVoltage;
/* Wait at least 2ms before setting ADON */
HAL_Delay(2U);
}
/* Enable SDADC */
hsdadc->Instance->CR2 |= SDADC_CR2_ADON;
/* Wait end of stabilization */
while((hsdadc->Instance->ISR & SDADC_ISR_STABIP) != 0UL)
{
}
/* Set SDADC to ready state */
hsdadc->State = HAL_SDADC_STATE_READY;
/* Return HAL status */
return HAL_OK;
}
/**
* @brief De-initializes the SDADC.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_SDADC_DeInit(SDADC_HandleTypeDef* hsdadc)
{
/* Check SDADC handle */
if(hsdadc == NULL)
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Disable the SDADC */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_ADON);
/* Reset all registers */
hsdadc->Instance->CR1 = 0x00000000UL;
hsdadc->Instance->CR2 = 0x00000000UL;
hsdadc->Instance->JCHGR = 0x00000001UL;
hsdadc->Instance->CONF0R = 0x00000000UL;
hsdadc->Instance->CONF1R = 0x00000000UL;
hsdadc->Instance->CONF2R = 0x00000000UL;
hsdadc->Instance->CONFCHR1 = 0x00000000UL;
hsdadc->Instance->CONFCHR2 = 0x00000000UL;
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
if (hsdadc->MspDeInitCallback == NULL)
{
hsdadc->MspDeInitCallback = HAL_SDADC_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware */
hsdadc->MspDeInitCallback(hsdadc);
#else
/* DeInit the low level hardware */
HAL_SDADC_MspDeInit(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Set SDADC in reset state */
hsdadc->State = HAL_SDADC_STATE_RESET;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the SDADC MSP.
* @param hsdadc SDADC handle
* @retval None
*/
__weak void HAL_SDADC_MspInit(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_MspInit could be implemented in the user file.
*/
}
/**
* @brief De-initializes the SDADC MSP.
* @param hsdadc SDADC handle
* @retval None
*/
__weak void HAL_SDADC_MspDeInit(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_MspDeInit could be implemented in the user file.
*/
}
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User SDADC Callback
* To be used instead of the weak predefined callback
* @param hsdadc Pointer to a SDADC_HandleTypeDef structure that contains
* the configuration information for the specified SDADC.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_SDADC_CONVERSION_HALF_CB_ID SDADC half regular conversion complete callback ID
* @arg @ref HAL_SDADC_CONVERSION_COMPLETE_CB_ID SDADC regular conversion complete callback ID
* @arg @ref HAL_SDADC_INJ_CONVERSION_HALF_CB_ID SDADC half injected conversion complete callback ID
* @arg @ref HAL_SDADC_INJ_CONVERSION_COMPLETE_CB_ID SDADC injected conversion complete callback ID
* @arg @ref HAL_SDADC_CALIBRATION_COMPLETE_CB_ID SDADC calibration callback ID
* @arg @ref HAL_SDADC_ERROR_CB_ID SDADC error callback ID
* @arg @ref HAL_SDADC_MSPINIT_CB_ID SDADC Msp Init callback ID
* @arg @ref HAL_SDADC_MSPDEINIT_CB_ID SDADC Msp DeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_RegisterCallback(SDADC_HandleTypeDef *hsdadc, HAL_SDADC_CallbackIDTypeDef CallbackID, pSDADC_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (HAL_SDADC_STATE_READY == hsdadc->State)
{
switch (CallbackID)
{
case HAL_SDADC_CONVERSION_HALF_CB_ID :
hsdadc->ConvHalfCpltCallback = pCallback;
break;
case HAL_SDADC_CONVERSION_COMPLETE_CB_ID :
hsdadc->ConvCpltCallback = pCallback;
break;
case HAL_SDADC_INJ_CONVERSION_HALF_CB_ID :
hsdadc->InjectedConvHalfCpltCallback = pCallback;
break;
case HAL_SDADC_INJ_CONVERSION_COMPLETE_CB_ID :
hsdadc->InjectedConvCpltCallback = pCallback;
break;
case HAL_SDADC_CALIBRATION_COMPLETE_CB_ID :
hsdadc->CalibrationCpltCallback = pCallback;
break;
case HAL_SDADC_ERROR_CB_ID :
hsdadc->ErrorCallback = pCallback;
break;
case HAL_SDADC_MSPINIT_CB_ID :
hsdadc->MspInitCallback = pCallback;
break;
case HAL_SDADC_MSPDEINIT_CB_ID :
hsdadc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_SDADC_STATE_RESET == hsdadc->State)
{
switch (CallbackID)
{
case HAL_SDADC_MSPINIT_CB_ID :
hsdadc->MspInitCallback = pCallback;
break;
case HAL_SDADC_MSPDEINIT_CB_ID :
hsdadc->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a SDADC Callback
* ADC callback is redirected to the weak predefined callback
* @param hsdadc Pointer to a SDADC_HandleTypeDef structure that contains
* the configuration information for the specified ADC.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_SDADC_CONVERSION_HALF_CB_ID SDADC half regular conversion complete callback ID
* @arg @ref HAL_SDADC_CONVERSION_COMPLETE_CB_ID SDADC regular conversion complete callback ID
* @arg @ref HAL_SDADC_INJ_CONVERSION_HALF_CB_ID SDADC half injected conversion complete callback ID
* @arg @ref HAL_SDADC_INJ_CONVERSION_COMPLETE_CB_ID SDADC injected conversion complete callback ID
* @arg @ref HAL_SDADC_CALIBRATION_COMPLETE_CB_ID SDADC calibration callback ID
* @arg @ref HAL_SDADC_ERROR_CB_ID SDADC error callback ID
* @arg @ref HAL_SDADC_MSPINIT_CB_ID SDADC Msp Init callback ID
* @arg @ref HAL_SDADC_MSPDEINIT_CB_ID SDADC Msp DeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_UnRegisterCallback(SDADC_HandleTypeDef *hsdadc, HAL_SDADC_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (HAL_SDADC_STATE_READY == hsdadc->State)
{
switch (CallbackID)
{
case HAL_SDADC_CONVERSION_HALF_CB_ID :
hsdadc->ConvHalfCpltCallback = HAL_SDADC_ConvHalfCpltCallback;
break;
case HAL_SDADC_CONVERSION_COMPLETE_CB_ID :
hsdadc->ConvCpltCallback = HAL_SDADC_ConvCpltCallback;
break;
case HAL_SDADC_INJ_CONVERSION_HALF_CB_ID :
hsdadc->InjectedConvHalfCpltCallback = HAL_SDADC_InjectedConvHalfCpltCallback;
break;
case HAL_SDADC_INJ_CONVERSION_COMPLETE_CB_ID :
hsdadc->InjectedConvCpltCallback = HAL_SDADC_InjectedConvCpltCallback;
break;
case HAL_SDADC_CALIBRATION_COMPLETE_CB_ID :
hsdadc->CalibrationCpltCallback = HAL_SDADC_CalibrationCpltCallback;
break;
case HAL_SDADC_ERROR_CB_ID :
hsdadc->ErrorCallback = HAL_SDADC_ErrorCallback;
break;
case HAL_SDADC_MSPINIT_CB_ID :
hsdadc->MspInitCallback = HAL_SDADC_MspInit;
break;
case HAL_SDADC_MSPDEINIT_CB_ID :
hsdadc->MspDeInitCallback = HAL_SDADC_MspDeInit;
break;
default :
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_SDADC_STATE_RESET == hsdadc->State)
{
switch (CallbackID)
{
case HAL_SDADC_MSPINIT_CB_ID :
hsdadc->MspInitCallback = HAL_SDADC_MspInit; /* Legacy weak MspInit */
break;
case HAL_SDADC_MSPDEINIT_CB_ID :
hsdadc->MspDeInitCallback = HAL_SDADC_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hsdadc->ErrorCode |= SDADC_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SDADC_Exported_Functions_Group2 peripheral control functions
* @brief Peripheral control functions
*
@verbatim
===============================================================================
##### Peripheral control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Program one of the three different configurations for channels.
(+) Associate channel to one of configurations.
(+) Select regular and injected channels.
(+) Enable/disable continuous mode for regular and injected conversions.
(+) Select regular and injected triggers.
(+) Select and configure injected external trigger.
(+) Enable/disable delay addition for injected conversions.
(+) Configure multimode.
@endverbatim
* @{
*/
/**
* @brief This function allows the user to set parameters for a configuration.
* Parameters are input mode, common mode, gain and offset.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing)
* @param hsdadc SDADC handle.
* @param ConfIndex Index of configuration to modify.
* This parameter can be a value of @ref SDADC_ConfIndex.
* @param ConfParamStruct Parameters to apply for this configuration.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_PrepareChannelConfig(SDADC_HandleTypeDef *hsdadc,
uint32_t ConfIndex,
SDADC_ConfParamTypeDef* ConfParamStruct)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tmp;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_CONF_INDEX(ConfIndex));
assert_param(ConfParamStruct != ((void*) 0));
assert_param(IS_SDADC_INPUT_MODE(ConfParamStruct->InputMode));
assert_param(IS_SDADC_GAIN(ConfParamStruct->Gain));
assert_param(IS_SDADC_COMMON_MODE(ConfParamStruct->CommonMode));
assert_param(IS_SDADC_OFFSET_VALUE(ConfParamStruct->Offset));
/* Check SDADC state is ready */
if(hsdadc->State != HAL_SDADC_STATE_READY)
{
status = HAL_ERROR;
}
else
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Program configuration register with parameters */
tmp = (uint32_t)((uint32_t)(hsdadc->Instance) + \
SDADC_CONFREG_OFFSET + \
(uint32_t)(ConfIndex << 2UL));
*(__IO uint32_t *) (tmp) = (uint32_t) (ConfParamStruct->InputMode | \
ConfParamStruct->Gain | \
ConfParamStruct->CommonMode | \
ConfParamStruct->Offset);
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows the user to associate a channel with one of the
* available configurations.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing)
* @param hsdadc SDADC handle.
* @param Channel Channel to associate with configuration.
* This parameter can be a value of @ref SDADC_Channel_Selection.
* @param ConfIndex Index of configuration to associate with channel.
* This parameter can be a value of @ref SDADC_ConfIndex.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_AssociateChannelConfig(SDADC_HandleTypeDef *hsdadc,
uint32_t Channel,
uint32_t ConfIndex)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t channelnum;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_REGULAR_CHANNEL(Channel));
assert_param(IS_SDADC_CONF_INDEX(ConfIndex));
/* Check SDADC state is ready */
if(hsdadc->State != HAL_SDADC_STATE_READY)
{
status = HAL_ERROR;
}
else
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Program channel configuration register according parameters */
if(Channel != SDADC_CHANNEL_8)
{
/* Get channel number */
channelnum = (uint32_t)(Channel>>16UL);
/* Set the channel configuration */
hsdadc->Instance->CONFCHR1 &= (uint32_t) ~((uint32_t)SDADC_CONFCHR1_CONFCH0 << ((channelnum << 2UL) & 0x1FUL));
hsdadc->Instance->CONFCHR1 |= (uint32_t) (ConfIndex << ((channelnum << 2UL) & 0x1FUL));
}
else
{
hsdadc->Instance->CONFCHR2 = (uint32_t) (ConfIndex);
}
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows to select channel for regular conversion and
* to enable/disable continuous mode for regular conversion.
* @param hsdadc SDADC handle.
* @param Channel Channel for regular conversion.
* This parameter can be a value of @ref SDADC_Channel_Selection.
* @param ContinuousMode Enable/disable continuous mode for regular conversion.
* This parameter can be a value of @ref SDADC_ContinuousMode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_ConfigChannel(SDADC_HandleTypeDef *hsdadc,
uint32_t Channel,
uint32_t ContinuousMode)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_REGULAR_CHANNEL(Channel));
assert_param(IS_SDADC_CONTINUOUS_MODE(ContinuousMode));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_RESET) && (hsdadc->State != HAL_SDADC_STATE_ERROR))
{
/* Set RCH[3:0] and RCONT bits in SDADC_CR2 */
hsdadc->Instance->CR2 &= (uint32_t) ~(SDADC_CR2_RCH | SDADC_CR2_RCONT);
if(ContinuousMode == SDADC_CONTINUOUS_CONV_ON)
{
hsdadc->Instance->CR2 |= (uint32_t) ((Channel & SDADC_MSB_MASK) | SDADC_CR2_RCONT);
}
else
{
hsdadc->Instance->CR2 |= (uint32_t) ((Channel & SDADC_MSB_MASK));
}
/* Store continuous mode information */
hsdadc->RegularContMode = ContinuousMode;
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to select channels for injected conversion and
* to enable/disable continuous mode for injected conversion.
* @param hsdadc SDADC handle.
* @param Channel Channels for injected conversion.
* This parameter can be a values combination of @ref SDADC_Channel_Selection.
* @param ContinuousMode Enable/disable continuous mode for injected conversion.
* This parameter can be a value of @ref SDADC_ContinuousMode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedConfigChannel(SDADC_HandleTypeDef *hsdadc,
uint32_t Channel,
uint32_t ContinuousMode)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_INJECTED_CHANNEL(Channel));
assert_param(IS_SDADC_CONTINUOUS_MODE(ContinuousMode));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_RESET) && (hsdadc->State != HAL_SDADC_STATE_ERROR))
{
/* Set JCHG[8:0] bits in SDADC_JCHG */
hsdadc->Instance->JCHGR = (uint32_t) (Channel & SDADC_LSB_MASK);
/* Set or clear JCONT bit in SDADC_CR2 */
if(ContinuousMode == SDADC_CONTINUOUS_CONV_ON)
{
hsdadc->Instance->CR2 |= SDADC_CR2_JCONT;
}
else
{
hsdadc->Instance->CR2 &= ~(SDADC_CR2_JCONT);
}
/* Store continuous mode information */
hsdadc->InjectedContMode = ContinuousMode;
/* Store number of injected channels */
hsdadc->InjectedChannelsNbr = SDADC_GetInjChannelsNbr(Channel);
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to select trigger for regular conversions.
* @note This function should not be called if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @param Trigger Trigger for regular conversions.
* This parameter can be one of the following value :
* @arg SDADC_SOFTWARE_TRIGGER : Software trigger.
* @arg SDADC_SYNCHRONOUS_TRIGGER : Synchronous with SDADC1 (only for SDADC2 and SDADC3).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_SelectRegularTrigger(SDADC_HandleTypeDef *hsdadc, uint32_t Trigger)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_REGULAR_TRIGGER(Trigger));
/* Check parameters compatibility */
if((hsdadc->Instance == SDADC1) && (Trigger == SDADC_SYNCHRONOUS_TRIGGER))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_CALIB) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Store regular trigger information */
hsdadc->RegularTrigger = Trigger;
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to select trigger for injected conversions.
* @note This function should not be called if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @param Trigger Trigger for injected conversions.
* This parameter can be one of the following value :
* @arg SDADC_SOFTWARE_TRIGGER : Software trigger.
* @arg SDADC_SYNCHRONOUS_TRIGGER : Synchronous with SDADC1 (only for SDADC2 and SDADC3).
* @arg SDADC_EXTERNAL_TRIGGER : External trigger.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_SelectInjectedTrigger(SDADC_HandleTypeDef *hsdadc, uint32_t Trigger)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_INJECTED_TRIGGER(Trigger));
/* Check parameters compatibility */
if((hsdadc->Instance == SDADC1) && (Trigger == SDADC_SYNCHRONOUS_TRIGGER))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_CALIB) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Store regular trigger information */
hsdadc->InjectedTrigger = Trigger;
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to select and configure injected external trigger.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing)
* @param hsdadc SDADC handle.
* @param InjectedExtTrigger External trigger for injected conversions.
* This parameter can be a value of @ref SDADC_InjectedExtTrigger.
* @param ExtTriggerEdge Edge of external injected trigger.
* This parameter can be a value of @ref SDADC_ExtTriggerEdge.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_SelectInjectedExtTrigger(SDADC_HandleTypeDef *hsdadc,
uint32_t InjectedExtTrigger,
uint32_t ExtTriggerEdge)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_EXT_INJEC_TRIG(InjectedExtTrigger));
assert_param(IS_SDADC_EXT_TRIG_EDGE(ExtTriggerEdge));
/* Check SDADC state */
if(hsdadc->State == HAL_SDADC_STATE_READY)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Set JEXTSEL[2:0] bits in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_JEXTSEL);
hsdadc->Instance->CR2 |= InjectedExtTrigger;
/* Store external trigger edge information */
hsdadc->ExtTriggerEdge = ExtTriggerEdge;
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to enable/disable delay addition for injected conversions.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing)
* @param hsdadc SDADC handle.
* @param InjectedDelay Enable/disable delay for injected conversions.
* This parameter can be a value of @ref SDADC_InjectedDelay.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_SelectInjectedDelay(SDADC_HandleTypeDef *hsdadc,
uint32_t InjectedDelay)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_INJECTED_DELAY(InjectedDelay));
/* Check SDADC state */
if(hsdadc->State == HAL_SDADC_STATE_READY)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Set JDS bit in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_JDS);
hsdadc->Instance->CR2 |= InjectedDelay;
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to configure multimode for regular conversions.
* @note This function should not be called if regular conversion is ongoing
* and should be could only for SDADC1.
* @param hsdadc SDADC handle.
* @param MultimodeType Type of multimode for regular conversions.
* This parameter can be a value of @ref SDADC_MultimodeType.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_MultiModeConfigChannel(SDADC_HandleTypeDef* hsdadc,
uint32_t MultimodeType)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_MULTIMODE_TYPE(MultimodeType));
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_CALIB) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Store regular trigger information */
hsdadc->RegularMultimode = MultimodeType;
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to configure multimode for injected conversions.
* @note This function should not be called if injected conversion is ongoing
* and should be could only for SDADC1.
* @param hsdadc SDADC handle.
* @param MultimodeType Type of multimode for injected conversions.
* This parameter can be a value of @ref SDADC_MultimodeType.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeConfigChannel(SDADC_HandleTypeDef* hsdadc,
uint32_t MultimodeType)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_MULTIMODE_TYPE(MultimodeType));
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_CALIB) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Store regular trigger information */
hsdadc->InjectedMultimode = MultimodeType;
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @defgroup SDADC_Exported_Functions_Group3 Input and Output operation functions
* @brief IO operation Control functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start calibration.
(+) Poll for the end of calibration.
(+) Start calibration and enable interrupt.
(+) Start conversion of regular/injected channel.
(+) Poll for the end of regular/injected conversion.
(+) Stop conversion of regular/injected channel.
(+) Start conversion of regular/injected channel and enable interrupt.
(+) Stop conversion of regular/injected channel and disable interrupt.
(+) Start conversion of regular/injected channel and enable DMA transfer.
(+) Stop conversion of regular/injected channel and disable DMA transfer.
(+) Start multimode and enable DMA transfer for regular/injected conversion.
(+) Stop multimode and disable DMA transfer for regular/injected conversion..
(+) Get result of regular channel conversion.
(+) Get result of injected channel conversion.
(+) Get result of multimode conversion.
(+) Handle SDADC interrupt request.
(+) Callbacks for calibration and regular/injected conversions.
@endverbatim
* @{
*/
/**
* @brief This function allows to start calibration in polling mode.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing).
* @param hsdadc SDADC handle.
* @param CalibrationSequence Calibration sequence.
* This parameter can be a value of @ref SDADC_CalibrationSequence.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_CalibrationStart(SDADC_HandleTypeDef *hsdadc,
uint32_t CalibrationSequence)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_CALIB_SEQUENCE(CalibrationSequence));
/* Check SDADC state */
if(hsdadc->State == HAL_SDADC_STATE_READY)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Set CALIBCNT[1:0] bits in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_CALIBCNT);
hsdadc->Instance->CR2 |= CalibrationSequence;
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
/* Set STARTCALIB in SDADC_CR2 */
hsdadc->Instance->CR2 |= SDADC_CR2_STARTCALIB;
/* Set SDADC in calibration state */
hsdadc->State = HAL_SDADC_STATE_CALIB;
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to poll for the end of calibration.
* @note This function should be called only if calibration is ongoing.
* @param hsdadc SDADC handle.
* @param Timeout Timeout value in milliseconds.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_PollForCalibEvent(SDADC_HandleTypeDef* hsdadc, uint32_t Timeout)
{
uint32_t tickstart;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if(hsdadc->State != HAL_SDADC_STATE_CALIB)
{
/* Return error status */
return HAL_ERROR;
}
else
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait EOCALF bit in SDADC_ISR register */
while((hsdadc->Instance->ISR & SDADC_ISR_EOCALF) != SDADC_ISR_EOCALF)
{
/* Check the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick()-tickstart) > Timeout) || (Timeout == 0UL))
{
/* Return timeout status */
return HAL_TIMEOUT;
}
}
}
/* Set CLREOCALF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLREOCALF;
/* Set SDADC in ready state */
hsdadc->State = HAL_SDADC_STATE_READY;
/* Return function status */
return HAL_OK;
}
}
/**
* @brief This function allows to start calibration in interrupt mode.
* @note This function should be called only when SDADC instance is in idle state
* (neither calibration nor regular or injected conversion ongoing).
* @param hsdadc SDADC handle.
* @param CalibrationSequence Calibration sequence.
* This parameter can be a value of @ref SDADC_CalibrationSequence.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_CalibrationStart_IT(SDADC_HandleTypeDef *hsdadc,
uint32_t CalibrationSequence)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(IS_SDADC_CALIB_SEQUENCE(CalibrationSequence));
/* Check SDADC state */
if(hsdadc->State == HAL_SDADC_STATE_READY)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Set CALIBCNT[1:0] bits in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_CALIBCNT);
hsdadc->Instance->CR2 |= CalibrationSequence;
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
/* Set EOCALIE bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_EOCALIE;
/* Set STARTCALIB in SDADC_CR2 */
hsdadc->Instance->CR2 |= SDADC_CR2_STARTCALIB;
/* Set SDADC in calibration state */
hsdadc->State = HAL_SDADC_STATE_CALIB;
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to start regular conversion in polling mode.
* @note This function should be called only when SDADC instance is in idle state
* or if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Start(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Start regular conversion */
status = SDADC_RegConvStart(hsdadc);
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to poll for the end of regular conversion.
* @note This function should be called only if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @param Timeout Timeout value in milliseconds.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_PollForConversion(SDADC_HandleTypeDef* hsdadc, uint32_t Timeout)
{
uint32_t tickstart;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_REG) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
return HAL_ERROR;
}
else
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait REOCF bit in SDADC_ISR register */
while((hsdadc->Instance->ISR & SDADC_ISR_REOCF) != SDADC_ISR_REOCF)
{
/* Check the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick()-tickstart) > Timeout) || (Timeout == 0UL))
{
/* Return timeout status */
return HAL_TIMEOUT;
}
}
}
/* Check if overrun occurs */
if((hsdadc->Instance->ISR & SDADC_ISR_ROVRF) == SDADC_ISR_ROVRF)
{
/* Update error code and call error callback */
hsdadc->ErrorCode = SDADC_ERROR_REGULAR_OVERRUN;
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ErrorCallback(hsdadc);
#else
HAL_SDADC_ErrorCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Set CLRROVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;
}
/* Update SDADC state only if not continuous conversion and SW trigger */
if((hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER))
{
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;
}
/* Return function status */
return HAL_OK;
}
}
/**
* @brief This function allows to stop regular conversion in polling mode.
* @note This function should be called only if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Stop(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_REG) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Stop regular conversion */
status = SDADC_RegConvStop(hsdadc);
}
/* Return function status */
return status;
}
/**
* @brief This function allows to start regular conversion in interrupt mode.
* @note This function should be called only when SDADC instance is in idle state
* or if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Start_IT(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Set REOCIE and ROVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 |= (uint32_t) (SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);
/* Start regular conversion */
status = SDADC_RegConvStart(hsdadc);
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop regular conversion in interrupt mode.
* @note This function should be called only if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Stop_IT(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_REG) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear REOCIE and ROVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 &= (uint32_t) ~(SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);
/* Stop regular conversion */
status = SDADC_RegConvStop(hsdadc);
}
/* Return function status */
return status;
}
/**
* @brief This function allows to start regular conversion in DMA mode.
* @note This function should be called only when SDADC instance is in idle state
* or if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @param pData The destination buffer address.
* @param Length The length of data to be transferred from SDADC peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Start_DMA(SDADC_HandleTypeDef *hsdadc, uint32_t *pData,
uint32_t Length)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(pData != ((void*) 0));
assert_param(Length != 0UL);
/* Check that DMA is not enabled for injected conversion */
if((hsdadc->Instance->CR1 & SDADC_CR1_JDMAEN) == SDADC_CR1_JDMAEN)
{
status = HAL_ERROR;
}
/* Check parameters compatibility */
else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
(Length != 1U))
{
status = HAL_ERROR;
}
else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Set callbacks on DMA handler */
hsdadc->hdma->XferCpltCallback = SDADC_DMARegularConvCplt;
hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
{
hsdadc->hdma->XferHalfCpltCallback = SDADC_DMARegularHalfConvCplt;
}
/* Set RDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_RDMAEN;
/* Start DMA in interrupt mode */
if(HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATAR, \
(uint32_t) pData, Length) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Start regular conversion */
status = SDADC_RegConvStart(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop regular conversion in DMA mode.
* @note This function should be called only if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_Stop_DMA(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_REG) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear RDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_RDMAEN);
/* Stop current DMA transfer */
if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Stop regular conversion */
status = SDADC_RegConvStop(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows to get regular conversion value.
* @param hsdadc SDADC handle.
* @retval Regular conversion value
*/
uint32_t HAL_SDADC_GetValue(SDADC_HandleTypeDef *hsdadc)
{
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Return regular conversion value */
return hsdadc->Instance->RDATAR;
}
/**
* @brief This function allows to start injected conversion in polling mode.
* @note This function should be called only when SDADC instance is in idle state
* or if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStart(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Start injected conversion */
status = SDADC_InjConvStart(hsdadc);
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to poll for the end of injected conversion.
* @note This function should be called only if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @param Timeout Timeout value in milliseconds.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_PollForInjectedConversion(SDADC_HandleTypeDef* hsdadc,
uint32_t Timeout)
{
uint32_t tickstart;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
return HAL_ERROR;
}
else
{
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait JEOCF bit in SDADC_ISR register */
while((hsdadc->Instance->ISR & SDADC_ISR_JEOCF) != SDADC_ISR_JEOCF)
{
/* Check the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick()-tickstart) > Timeout) || (Timeout == 0UL))
{
/* Return timeout status */
return HAL_TIMEOUT;
}
}
}
/* Check if overrun occurs */
if((hsdadc->Instance->ISR & SDADC_ISR_JOVRF) == SDADC_ISR_JOVRF)
{
/* Update error code and call error callback */
hsdadc->ErrorCode = SDADC_ERROR_INJECTED_OVERRUN;
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ErrorCallback(hsdadc);
#else
HAL_SDADC_ErrorCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Set CLRJOVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;
}
/* Update remaining injected conversions */
hsdadc->InjConvRemaining--;
if(hsdadc->InjConvRemaining == 0UL)
{
/* end of injected sequence, reset the value */
hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;
}
/* Update SDADC state only if not continuous conversion, SW trigger */
/* and end of injected sequence */
if((hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjConvRemaining == hsdadc->InjectedChannelsNbr))
{
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;
}
/* Return function status */
return HAL_OK;
}
}
/**
* @brief This function allows to stop injected conversion in polling mode.
* @note This function should be called only if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStop(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Stop injected conversion */
status = SDADC_InjConvStop(hsdadc);
}
/* Return function status */
return status;
}
/**
* @brief This function allows to start injected conversion in interrupt mode.
* @note This function should be called only when SDADC instance is in idle state
* or if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStart_IT(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Set JEOCIE and JOVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 |= (uint32_t) (SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);
/* Start injected conversion */
status = SDADC_InjConvStart(hsdadc);
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop injected conversion in interrupt mode.
* @note This function should be called only if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStop_IT(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear JEOCIE and JOVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 &= (uint32_t) ~(SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);
/* Stop injected conversion */
status = SDADC_InjConvStop(hsdadc);
}
/* Return function status */
return status;
}
/**
* @brief This function allows to start injected conversion in DMA mode.
* @note This function should be called only when SDADC instance is in idle state
* or if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @param pData The destination buffer address.
* @param Length The length of data to be transferred from SDADC peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStart_DMA(SDADC_HandleTypeDef *hsdadc, uint32_t *pData,
uint32_t Length)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(pData != ((void*) 0));
assert_param(Length != 0UL);
/* Check that DMA is not enabled for regular conversion */
if((hsdadc->Instance->CR1 & SDADC_CR1_RDMAEN) == SDADC_CR1_RDMAEN)
{
status = HAL_ERROR;
}
/* Check parameters compatibility */
else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
(Length > hsdadc->InjectedChannelsNbr))
{
status = HAL_ERROR;
}
else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Set callbacks on DMA handler */
hsdadc->hdma->XferCpltCallback = SDADC_DMAInjectedConvCplt;
hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
{
hsdadc->hdma->XferHalfCpltCallback = SDADC_DMAInjectedHalfConvCplt;
}
/* Set JDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_JDMAEN;
/* Start DMA in interrupt mode */
if(HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATAR, \
(uint32_t) pData, Length) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Start injected conversion */
status = SDADC_InjConvStart(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop injected conversion in DMA mode.
* @note This function should be called only if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedStop_DMA(SDADC_HandleTypeDef *hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check SDADC state */
if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear JDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_JDMAEN);
/* Stop current DMA transfer */
if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Stop injected conversion */
status = SDADC_InjConvStop(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows to get injected conversion value.
* @param hsdadc SDADC handle.
* @param Channel Corresponding channel of injected conversion.
* @retval Injected conversion value
*/
uint32_t HAL_SDADC_InjectedGetValue(SDADC_HandleTypeDef *hsdadc, uint32_t* Channel)
{
uint32_t value;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(Channel != ((void*) 0));
/* Read SDADC_JDATAR register and extract channel and conversion value */
value = hsdadc->Instance->JDATAR;
*Channel = ((value & SDADC_JDATAR_JDATACH) >> SDADC_JDATAR_CH_OFFSET);
value &= SDADC_JDATAR_JDATA;
/* Return injected conversion value */
return value;
}
/**
* @brief This function allows to start multimode regular conversions in DMA mode.
* @note This function should be called only when SDADC instance is in idle state
* or if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @param pData The destination buffer address.
* @param Length The length of data to be transferred from SDADC peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_MultiModeStart_DMA(SDADC_HandleTypeDef* hsdadc, uint32_t* pData,
uint32_t Length)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(pData != ((void*) 0));
assert_param(Length != 0UL);
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check that DMA is not enabled for injected conversion */
else if((hsdadc->Instance->CR1 & SDADC_CR1_JDMAEN) == SDADC_CR1_JDMAEN)
{
status = HAL_ERROR;
}
/* Check parameters compatibility */
else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
(Length != 1U))
{
status = HAL_ERROR;
}
else if((hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_INJ))
{
/* Set callbacks on DMA handler */
hsdadc->hdma->XferCpltCallback = SDADC_DMARegularConvCplt;
hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
{
hsdadc->hdma->XferHalfCpltCallback = SDADC_DMARegularHalfConvCplt;
}
/* Set RDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_RDMAEN;
/* Start DMA in interrupt mode */
if(hsdadc->RegularMultimode == SDADC_MULTIMODE_SDADC1_SDADC2)
{
status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATA12R, \
(uint32_t) pData, Length);
}
else
{
status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->RDATA13R, \
(uint32_t) pData, Length);
}
if(status != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Start regular conversion */
status = SDADC_RegConvStart(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop multimode regular conversions in DMA mode.
* @note This function should be called only if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_MultiModeStop_DMA(SDADC_HandleTypeDef* hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State != HAL_SDADC_STATE_REG) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear RDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_RDMAEN);
/* Stop current DMA transfer */
if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Stop regular conversion */
status = SDADC_RegConvStop(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows to get multimode regular conversion value.
* @param hsdadc SDADC handle.
* @retval Multimode regular conversion value
*/
uint32_t HAL_SDADC_MultiModeGetValue(SDADC_HandleTypeDef* hsdadc)
{
uint32_t value;
/* Check parameters and check instance is SDADC1 */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(hsdadc->Instance == SDADC1);
/* read multimode regular value */
value = (hsdadc->RegularMultimode == SDADC_MULTIMODE_SDADC1_SDADC2) ? \
hsdadc->Instance->RDATA12R : hsdadc->Instance->RDATA13R;
/* Return multimode regular conversions value */
return value;
}
/**
* @brief This function allows to start multimode injected conversions in DMA mode.
* @note This function should be called only when SDADC instance is in idle state
* or if regular conversion is ongoing.
* @param hsdadc SDADC handle.
* @param pData The destination buffer address.
* @param Length The length of data to be transferred from SDADC peripheral to memory.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeStart_DMA(SDADC_HandleTypeDef* hsdadc,
uint32_t* pData, uint32_t Length)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(pData != ((void*) 0));
assert_param(Length != 0UL);
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check that DMA is not enabled for regular conversion */
else if((hsdadc->Instance->CR1 & SDADC_CR1_RDMAEN) == SDADC_CR1_RDMAEN)
{
status = HAL_ERROR;
}
/* Check parameters compatibility */
else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_NORMAL) && \
(Length > (hsdadc->InjectedChannelsNbr << 1U)))
{
status = HAL_ERROR;
}
else if((hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->hdma->Init.Mode == DMA_CIRCULAR))
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State == HAL_SDADC_STATE_READY) || \
(hsdadc->State == HAL_SDADC_STATE_REG))
{
/* Set callbacks on DMA handler */
hsdadc->hdma->XferCpltCallback = SDADC_DMAInjectedConvCplt;
hsdadc->hdma->XferErrorCallback = SDADC_DMAError;
if(hsdadc->hdma->Init.Mode == DMA_CIRCULAR)
{
hsdadc->hdma->XferHalfCpltCallback = SDADC_DMAInjectedHalfConvCplt;
}
/* Set JDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_JDMAEN;
/* Start DMA in interrupt mode */
if(hsdadc->InjectedMultimode == SDADC_MULTIMODE_SDADC1_SDADC2)
{
status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATA12R, \
(uint32_t) pData, Length);
}
else
{
status = HAL_DMA_Start_IT(hsdadc->hdma, (uint32_t)&hsdadc->Instance->JDATA13R, \
(uint32_t) pData, Length);
}
if(status != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Start injected conversion */
status = SDADC_InjConvStart(hsdadc);
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to stop multimode injected conversions in DMA mode.
* @note This function should be called only if injected conversion is ongoing.
* @param hsdadc SDADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SDADC_InjectedMultiModeStop_DMA(SDADC_HandleTypeDef* hsdadc)
{
HAL_StatusTypeDef status;
/* Check parameters */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
/* Check instance is SDADC1 */
if(hsdadc->Instance != SDADC1)
{
status = HAL_ERROR;
}
/* Check SDADC state */
else if((hsdadc->State != HAL_SDADC_STATE_INJ) && \
(hsdadc->State != HAL_SDADC_STATE_REG_INJ))
{
/* Return error status */
status = HAL_ERROR;
}
else
{
/* Clear JDMAEN bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_JDMAEN);
/* Stop current DMA transfer */
if(HAL_DMA_Abort(hsdadc->hdma) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_ERROR;
}
else
{
/* Stop injected conversion */
status = SDADC_InjConvStop(hsdadc);
}
}
/* Return function status */
return status;
}
/**
* @brief This function allows to get multimode injected conversion value.
* @param hsdadc SDADC handle.
* @retval Multimode injected conversion value
*/
uint32_t HAL_SDADC_InjectedMultiModeGetValue(SDADC_HandleTypeDef* hsdadc)
{
uint32_t value;
/* Check parameters and check instance is SDADC1 */
assert_param(IS_SDADC_ALL_INSTANCE(hsdadc->Instance));
assert_param(hsdadc->Instance == SDADC1);
/* read multimode injected value */
value = (hsdadc->InjectedMultimode == SDADC_MULTIMODE_SDADC1_SDADC2) ? \
hsdadc->Instance->JDATA12R : hsdadc->Instance->JDATA13R;
/* Return multimode injected conversions value */
return value;
}
/**
* @brief This function handles the SDADC interrupts.
* @param hsdadc SDADC handle.
* @retval None
*/
void HAL_SDADC_IRQHandler(SDADC_HandleTypeDef* hsdadc)
{
uint32_t tmp_isr = hsdadc->Instance->ISR;
uint32_t tmp_cr1 = hsdadc->Instance->CR1;
/* Check if end of regular conversion */
if(((tmp_cr1 & SDADC_CR1_REOCIE) == SDADC_CR1_REOCIE) &&
((tmp_isr & SDADC_ISR_REOCF) == SDADC_ISR_REOCF))
{
/* Call regular conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ConvCpltCallback(hsdadc);
#else
HAL_SDADC_ConvCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* End of conversion if mode is not continuous and software trigger */
if((hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER))
{
/* Clear REOCIE and ROVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_REOCIE | SDADC_CR1_ROVRIE);
/* Update SDADC state */
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;
}
}
/* Check if end of injected conversion */
else if(((tmp_cr1 & SDADC_CR1_JEOCIE) == SDADC_CR1_JEOCIE) &&
((tmp_isr & SDADC_ISR_JEOCF) == SDADC_ISR_JEOCF))
{
/* Call injected conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->InjectedConvCpltCallback(hsdadc);
#else
HAL_SDADC_InjectedConvCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Update remaining injected conversions */
hsdadc->InjConvRemaining--;
if(hsdadc->InjConvRemaining ==0UL)
{
/* end of injected sequence, reset the value */
hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;
}
/* End of conversion if mode is not continuous, software trigger */
/* and end of injected sequence */
if((hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_OFF) && \
(hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER) && \
(hsdadc->InjConvRemaining == hsdadc->InjectedChannelsNbr))
{
/* Clear JEOCIE and JOVRIE bits in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_JEOCIE | SDADC_CR1_JOVRIE);
/* Update SDADC state */
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;
}
}
/* Check if end of calibration */
else if(((tmp_cr1 & SDADC_CR1_EOCALIE) == SDADC_CR1_EOCALIE) &&
((tmp_isr & SDADC_ISR_EOCALF) == SDADC_ISR_EOCALF))
{
/* Clear EOCALIE bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_EOCALIE);
/* Set CLREOCALF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLREOCALF;
/* Call calibration callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->CalibrationCpltCallback(hsdadc);
#else
HAL_SDADC_CalibrationCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
/* Update SDADC state */
hsdadc->State = HAL_SDADC_STATE_READY;
}
/* Check if overrun occurs during regular conversion */
else if(((tmp_cr1 & SDADC_CR1_ROVRIE) == SDADC_CR1_ROVRIE) &&
((tmp_isr & SDADC_ISR_ROVRF) == SDADC_ISR_ROVRF))
{
/* Set CLRROVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;
/* Update error code */
hsdadc->ErrorCode = SDADC_ERROR_REGULAR_OVERRUN;
/* Call error callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ErrorCallback(hsdadc);
#else
HAL_SDADC_ErrorCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/* Check if overrun occurs during injected conversion */
else if(((tmp_cr1 & SDADC_CR1_JOVRIE) == SDADC_CR1_JOVRIE) &&
((tmp_isr & SDADC_ISR_JOVRF) == SDADC_ISR_JOVRF))
{
/* Set CLRJOVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;
/* Update error code */
hsdadc->ErrorCode = SDADC_ERROR_INJECTED_OVERRUN;
/* Call error callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ErrorCallback(hsdadc);
#else
HAL_SDADC_ErrorCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
else
{
/* No additional IRQ source */
}
return;
}
/**
* @brief Calibration complete callback.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_CalibrationCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_CalibrationCpltCallback could be implemented in the user file
*/
}
/**
* @brief Half regular conversion complete callback.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_ConvHalfCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_ConvHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Regular conversion complete callback.
* @note In interrupt mode, user has to read conversion value in this function
using HAL_SDADC_GetValue or HAL_SDADC_MultiModeGetValue.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_ConvCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_ConvCpltCallback could be implemented in the user file.
*/
}
/**
* @brief Half injected conversion complete callback.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_InjectedConvHalfCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_InjectedConvHalfCpltCallback could be implemented in the user file.
*/
}
/**
* @brief Injected conversion complete callback.
* @note In interrupt mode, user has to read conversion value in this function
using HAL_SDADC_InjectedGetValue or HAL_SDADC_InjectedMultiModeGetValue.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_InjectedConvCpltCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_InjectedConvCpltCallback could be implemented in the user file.
*/
}
/**
* @brief Error callback.
* @param hsdadc SDADC handle.
* @retval None
*/
__weak void HAL_SDADC_ErrorCallback(SDADC_HandleTypeDef* hsdadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hsdadc);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SDADC_ErrorCallback could be implemented in the user file.
*/
}
/**
* @brief DMA half transfer complete callback for regular conversion.
* @param hdma DMA handle.
* @retval None
*/
static void SDADC_DMARegularHalfConvCplt(DMA_HandleTypeDef *hdma)
{
/* Get SDADC handle */
SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;
/* Call regular half conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ConvHalfCpltCallback(hsdadc);
#else
HAL_SDADC_ConvHalfCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/**
* @brief DMA transfer complete callback for regular conversion.
* @param hdma DMA handle.
* @retval None
*/
static void SDADC_DMARegularConvCplt(DMA_HandleTypeDef *hdma)
{
/* Get SDADC handle */
SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;
/* Call regular conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ConvCpltCallback(hsdadc);
#else
HAL_SDADC_ConvCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/**
* @brief DMA half transfer complete callback for injected conversion.
* @param hdma DMA handle.
* @retval None
*/
static void SDADC_DMAInjectedHalfConvCplt(DMA_HandleTypeDef *hdma)
{
/* Get SDADC handle */
SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;
/* Call injected half conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->InjectedConvHalfCpltCallback(hsdadc);
#else
HAL_SDADC_InjectedConvHalfCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/**
* @brief DMA transfer complete callback for injected conversion.
* @param hdma DMA handle.
* @retval None
*/
static void SDADC_DMAInjectedConvCplt(DMA_HandleTypeDef *hdma)
{
/* Get SDADC handle */
SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;
/* Call injected conversion complete callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->InjectedConvCpltCallback(hsdadc);
#else
HAL_SDADC_InjectedConvCpltCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/**
* @brief DMA error callback.
* @param hdma DMA handle.
* @retval None
*/
static void SDADC_DMAError(DMA_HandleTypeDef *hdma)
{
/* Get SDADC handle */
SDADC_HandleTypeDef* hsdadc = (SDADC_HandleTypeDef*) ((DMA_HandleTypeDef*)hdma)->Parent;
/* Update error code */
hsdadc->ErrorCode = SDADC_ERROR_DMA;
/* Call error callback */
#if (USE_HAL_SDADC_REGISTER_CALLBACKS == 1)
hsdadc->ErrorCallback(hsdadc);
#else
HAL_SDADC_ErrorCallback(hsdadc);
#endif /* USE_HAL_SDADC_REGISTER_CALLBACKS */
}
/**
* @}
*/
/** @defgroup SDADC_Exported_Functions_Group4 Peripheral State functions
* @brief SDADC Peripheral State functions
*
@verbatim
===============================================================================
##### ADC Peripheral State functions #####
===============================================================================
[..] This subsection provides functions allowing to
(+) Get the SDADC state
(+) Get the SDADC Error
@endverbatim
* @{
*/
/**
* @brief This function allows to get the current SDADC state.
* @param hsdadc SDADC handle.
* @retval SDADC state.
*/
HAL_SDADC_StateTypeDef HAL_SDADC_GetState(SDADC_HandleTypeDef* hsdadc)
{
return hsdadc->State;
}
/**
* @brief This function allows to get the current SDADC error code.
* @param hsdadc SDADC handle.
* @retval SDADC error code.
*/
uint32_t HAL_SDADC_GetError(SDADC_HandleTypeDef* hsdadc)
{
return hsdadc->ErrorCode;
}
/**
* @}
*/
/** @addtogroup SDADC_Private_Functions SDADC Private Functions
* @{
*/
/**
* @brief This function allows to enter in init mode for SDADC instance.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
static HAL_StatusTypeDef SDADC_EnterInitMode(SDADC_HandleTypeDef* hsdadc)
{
uint32_t tickstart;
/* Set INIT bit on SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_INIT;
/* Wait INITRDY bit on SDADC_ISR */
tickstart = HAL_GetTick();
while((hsdadc->Instance->ISR & SDADC_ISR_INITRDY) == (uint32_t)RESET)
{
if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Return HAL status */
return HAL_OK;
}
/**
* @brief This function allows to exit from init mode for SDADC instance.
* @param hsdadc SDADC handle.
* @retval None.
*/
static void SDADC_ExitInitMode(SDADC_HandleTypeDef* hsdadc)
{
/* Reset INIT bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_INIT);
}
/**
* @brief This function allows to get the number of injected channels.
* @param Channels bitfield of injected channels.
* @retval Number of injected channels.
*/
static uint32_t SDADC_GetInjChannelsNbr(uint32_t Channels)
{
uint32_t nbChannels = 0UL;
uint32_t tmp,i;
/* Get the number of channels from bitfield */
tmp = (uint32_t) (Channels & SDADC_LSB_MASK);
for(i = 0UL ; i < 9UL ; i++)
{
if((tmp & 0x00000001UL) != 0UL)
{
nbChannels++;
}
tmp = (uint32_t) (tmp >> 1UL);
}
return nbChannels;
}
/**
* @brief This function allows to really start regular conversion.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
static HAL_StatusTypeDef SDADC_RegConvStart(SDADC_HandleTypeDef* hsdadc)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check regular trigger */
if(hsdadc->RegularTrigger == SDADC_SOFTWARE_TRIGGER)
{
/* Set RSWSTART bit in SDADC_CR2 register */
hsdadc->Instance->CR2 |= SDADC_CR2_RSWSTART;
}
else /* synchronous trigger */
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
/* Set RSYNC bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_RSYNC;
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Update SDADC state only if status is OK */
if(status == HAL_OK)
{
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_READY) ? \
HAL_SDADC_STATE_REG : HAL_SDADC_STATE_REG_INJ;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to really stop regular conversion.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
static HAL_StatusTypeDef SDADC_RegConvStop(SDADC_HandleTypeDef* hsdadc)
{
uint32_t tickstart;
__IO uint32_t dummy_read_for_register_reset;
/* Check continuous mode */
if(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_ON)
{
/* Clear REOCF by reading SDADC_RDATAR register */
dummy_read_for_register_reset = hsdadc->Instance->RDATAR;
UNUSED(dummy_read_for_register_reset);
/* Clear RCONT bit in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_RCONT);
}
/* Wait for the end of regular conversion */
tickstart = HAL_GetTick();
while((hsdadc->Instance->ISR & SDADC_ISR_RCIP) != 0UL)
{
if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
{
/* Set SDADC in error state and return timeout status */
hsdadc->State = HAL_SDADC_STATE_ERROR;
return HAL_TIMEOUT;
}
}
/* Check if trigger is synchronous */
if(hsdadc->RegularTrigger == SDADC_SYNCHRONOUS_TRIGGER)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state and return timeout status */
hsdadc->State = HAL_SDADC_STATE_ERROR;
return HAL_TIMEOUT;
}
else
{
/* Clear RSYNC bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_RSYNC);
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Check if continuous mode */
if(hsdadc->RegularContMode == SDADC_CONTINUOUS_CONV_ON)
{
/* Restore RCONT bit in SDADC_CR2 register */
hsdadc->Instance->CR2 |= SDADC_CR2_RCONT;
}
/* Clear REOCF by reading SDADC_RDATAR register */
dummy_read_for_register_reset = hsdadc->Instance->RDATAR;
UNUSED(dummy_read_for_register_reset);
/* Set CLRROVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRROVRF;
/* Update SDADC state */
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_REG) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_INJ;
/* Return function status */
return HAL_OK;
}
/**
* @brief This function allows to really start injected conversion.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
static HAL_StatusTypeDef SDADC_InjConvStart(SDADC_HandleTypeDef* hsdadc)
{
HAL_StatusTypeDef status = HAL_OK;
/* Initialize number of injected conversions remaining */
hsdadc->InjConvRemaining = hsdadc->InjectedChannelsNbr;
/* Check injected trigger */
if(hsdadc->InjectedTrigger == SDADC_SOFTWARE_TRIGGER)
{
/* Set JSWSTART bit in SDADC_CR2 register */
hsdadc->Instance->CR2 |= SDADC_CR2_JSWSTART;
}
else /* external or synchronous trigger */
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state */
hsdadc->State = HAL_SDADC_STATE_ERROR;
status = HAL_TIMEOUT;
}
else
{
if(hsdadc->InjectedTrigger == SDADC_SYNCHRONOUS_TRIGGER)
{
/* Set JSYNC bit in SDADC_CR1 register */
hsdadc->Instance->CR1 |= SDADC_CR1_JSYNC;
}
else /* external trigger */
{
/* Set JEXTEN[1:0] bits in SDADC_CR2 register */
hsdadc->Instance->CR2 |= hsdadc->ExtTriggerEdge;
}
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Update SDADC state only if status is OK */
if(status == HAL_OK)
{
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_READY) ? \
HAL_SDADC_STATE_INJ : HAL_SDADC_STATE_REG_INJ;
}
/* Return function status */
return status;
}
/**
* @brief This function allows to really stop injected conversion.
* @param hsdadc SDADC handle.
* @retval HAL status.
*/
static HAL_StatusTypeDef SDADC_InjConvStop(SDADC_HandleTypeDef* hsdadc)
{
uint32_t tickstart;
__IO uint32_t dummy_read_for_register_reset;
/* Check continuous mode */
if(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_ON)
{
/* Clear JEOCF by reading SDADC_JDATAR register */
dummy_read_for_register_reset = hsdadc->Instance->JDATAR;
UNUSED(dummy_read_for_register_reset);
/* Clear JCONT bit in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_JCONT);
}
/* Wait for the end of injected conversion */
tickstart = HAL_GetTick();
while((hsdadc->Instance->ISR & SDADC_ISR_JCIP) != 0UL)
{
if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
{
/* Set SDADC in error state and return timeout status */
hsdadc->State = HAL_SDADC_STATE_ERROR;
return HAL_TIMEOUT;
}
}
/* Check if trigger is not software */
if(hsdadc->InjectedTrigger != SDADC_SOFTWARE_TRIGGER)
{
/* Enter init mode */
if(SDADC_EnterInitMode(hsdadc) != HAL_OK)
{
/* Set SDADC in error state and return timeout status */
hsdadc->State = HAL_SDADC_STATE_ERROR;
return HAL_TIMEOUT;
}
else
{
/* Check if trigger is synchronous */
if(hsdadc->InjectedTrigger == SDADC_SYNCHRONOUS_TRIGGER)
{
/* Clear JSYNC bit in SDADC_CR1 register */
hsdadc->Instance->CR1 &= ~(SDADC_CR1_JSYNC);
}
else /* external trigger */
{
/* Clear JEXTEN[1:0] bits in SDADC_CR2 register */
hsdadc->Instance->CR2 &= ~(SDADC_CR2_JEXTEN);
}
/* Exit init mode */
SDADC_ExitInitMode(hsdadc);
}
}
/* Check if continuous mode */
if(hsdadc->InjectedContMode == SDADC_CONTINUOUS_CONV_ON)
{
/* Restore JCONT bit in SDADC_CR2 register */
hsdadc->Instance->CR2 |= SDADC_CR2_JCONT;
}
/* Clear JEOCF by reading SDADC_JDATAR register */
dummy_read_for_register_reset = hsdadc->Instance->JDATAR;
UNUSED(dummy_read_for_register_reset);
/* Set CLRJOVRF bit in SDADC_CLRISR register */
hsdadc->Instance->CLRISR |= SDADC_ISR_CLRJOVRF;
/* Update SDADC state */
hsdadc->State = (hsdadc->State == HAL_SDADC_STATE_INJ) ? \
HAL_SDADC_STATE_READY : HAL_SDADC_STATE_REG;
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* SDADC1 || SDADC2 || SDADC3 */
#endif /* HAL_SDADC_MODULE_ENABLED */
/**
* @}
*/