/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "CAN_Communication.h" #include "Channel_Control.h" #include "PCA9535D_Driver.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; DMA_HandleTypeDef hdma_adc1; DMA_HandleTypeDef hdma_adc2; CAN_HandleTypeDef hcan; I2C_HandleTypeDef hi2c1; IWDG_HandleTypeDef hiwdg; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim6; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_ADC2_Init(void); static void MX_CAN_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); static void MX_I2C1_Init(void); static void MX_USART1_UART_Init(void); static void MX_TIM6_Init(void); //static void MX_IWDG_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ uint16_t adc1_buffer[7]; uint16_t adc2_buffer[7]; // data type specific to 16 bit integer with no sign ( vorzeichen ) extern rx_status_frame rxstate; extern volatile uint8_t canmsg_received; uint32_t lastheartbeat; int inhibit_SDC; /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ // Freeze WDG when debugging //__HAL_DBGMCU_FREEZE_IWDG(); /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_CAN_Init(); MX_TIM2_Init(); MX_TIM3_Init(); MX_I2C1_Init(); MX_USART1_UART_Init(); MX_TIM6_Init(); //MX_IWDG_Init(); /* USER CODE BEGIN 2 */ // REMINDER: Comment out the IWDG Init above!!! HAL_GPIO_WritePin(STATUS_LED1_GPIO_Port , STATUS_LED1_Pin , GPIO_PIN_SET); HAL_GPIO_WritePin(GSS_GPIO_GPIO_Port, GSS_GPIO_Pin, GPIO_PIN_SET); ChannelControl_init(&hi2c1, &htim3, &htim2); // handler struktur ( handler adc1 .... usw ) can_init(&hcan); // can bus initilisiert , kommunikation zum hauptsteuergeraet ( autobox ) currentMonitor_init(&hadc1, &hadc2, &htim6); uint32_t lasttick = HAL_GetTick(); // gibt dir zuruck die milisekunden seit start. ( es fangt an und dann milisekunden + 1 usw....) HAL_TIM_Base_Start(&htim2); HAL_TIM_Base_Start(&htim3); // Prevent closing of SDC (esp. after WDG reset) //inhibit_SDC = 1; // Wait 1s to prevent bus error state while ABX is starting up // Wait 5s for the discharge of the DC link (so AMS can't restart) //HAL_Delay(1000); // SDC can now be closed inhibit_SDC = 0; // PDU will reset if it doesn't receive a heartbeat every 120ms //MX_IWDG_Init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while(1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ if (canmsg_received) { // USB zu CAN wandler , und dann CAN testen , validieren ob der code macht was es soll , red mit oskar/jasper canmsg_received = 0; ChannelControl_UpdateGPIOs(rxstate.iostatus); ChannelControl_UpdatePWMs( rxstate.radiatorfans, rxstate.cooling_pump, rxstate.tsacfans, rxstate.pwmaggregat ); } if ((HAL_GetTick() - lasttick) > 100U) { lasttick = HAL_GetTick(); can_sendloop(); } // nominal WD time is 100ms, plus a bit of tolerance // only trigger after 1s to allow for ABX bootup if (((HAL_GetTick() - lastheartbeat) > 125U) && (HAL_GetTick() > 1000U)) { // force open SDC, only resettable by power cycle inhibit_SDC = 1; } currentMonitor_checklimits(); // ob irgnwo ueberstrom getreten ist } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1 |RCC_PERIPHCLK_ADC12; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV1; PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /** Enables the Clock Security System */ HAL_RCC_EnableCSS(); } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DMAContinuousRequests = ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief CAN Initialization Function * @param None * @retval None */ static void MX_CAN_Init(void) { /* USER CODE BEGIN CAN_Init 0 */ /* USER CODE END CAN_Init 0 */ /* USER CODE BEGIN CAN_Init 1 */ /* USER CODE END CAN_Init 1 */ hcan.Instance = CAN; hcan.Init.Prescaler = 2; hcan.Init.Mode = CAN_MODE_NORMAL; hcan.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan.Init.TimeSeg1 = CAN_BS1_13TQ; hcan.Init.TimeSeg2 = CAN_BS2_2TQ; hcan.Init.TimeTriggeredMode = DISABLE; hcan.Init.AutoBusOff = ENABLE; hcan.Init.AutoWakeUp = DISABLE; hcan.Init.AutoRetransmission = DISABLE; hcan.Init.ReceiveFifoLocked = DISABLE; hcan.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CAN_Init 2 */ /* USER CODE END CAN_Init 2 */ } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x00303D5B; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief IWDG Initialization Function * @param None * @retval None */ static void MX_IWDG_Init(void) { /* USER CODE BEGIN IWDG_Init 0 */ /* USER CODE END IWDG_Init 0 */ /* USER CODE BEGIN IWDG_Init 1 */ // // CALC: // // 1000 × 1/(32 kHz / 4) // /* USER CODE END IWDG_Init 1 */ hiwdg.Instance = IWDG; hiwdg.Init.Prescaler = IWDG_PRESCALER_4; hiwdg.Init.Window = 1000; hiwdg.Init.Reload = 1000; if (HAL_IWDG_Init(&hiwdg) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN IWDG_Init 2 */ /* USER CODE END IWDG_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 65535; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ HAL_TIM_MspPostInit(&htim2); } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 65535; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief TIM6 Initialization Function * @param None * @retval None */ static void MX_TIM6_Init(void) { /* USER CODE BEGIN TIM6_Init 0 */ /* USER CODE END TIM6_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM6_Init 1 */ /* USER CODE END TIM6_Init 1 */ htim6.Instance = TIM6; htim6.Init.Prescaler = 400; htim6.Init.CounterMode = TIM_COUNTERMODE_UP; htim6.Init.Period = 8000-1; htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim6) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM6_Init 2 */ /* USER CODE END TIM6_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 38400; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_MultiProcessor_Init(&huart1, 0, UART_WAKEUPMETHOD_IDLELINE) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA2_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Channel1_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GSS_GPIO_Pin|DSEL_3_Pin|DSEL_4_Pin|DSEL_5_Pin |DSEL_6_Pin|DSEL_7_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, STATUS_LED1_Pin|STATUS_LED2_Pin|STATUS_LED3_Pin|STATUS_LED4_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : GSS_GPIO_Pin DSEL_3_Pin DSEL_4_Pin DSEL_5_Pin DSEL_6_Pin DSEL_7_Pin */ GPIO_InitStruct.Pin = GSS_GPIO_Pin|DSEL_3_Pin|DSEL_4_Pin|DSEL_5_Pin |DSEL_6_Pin|DSEL_7_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : STATUS_LED1_Pin STATUS_LED2_Pin STATUS_LED3_Pin STATUS_LED4_Pin */ GPIO_InitStruct.Pin = STATUS_LED1_Pin|STATUS_LED2_Pin|STATUS_LED3_Pin|STATUS_LED4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */