update IOC & regenerate

This commit is contained in:
Autobox 2024-06-11 17:57:43 +02:00
parent 60ddc046d0
commit 9aca436798
85 changed files with 2152 additions and 1390 deletions

View File

@ -1,11 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>Core</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
</buildSpec>
<natures>
</natures>
</projectDescription>

View File

@ -92,6 +92,7 @@ extern volatile uint8_t canmsg_received;
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

View File

@ -20,7 +20,6 @@
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
@ -68,6 +67,7 @@ void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */

176
Core/Src/syscalls.c Normal file
View File

@ -0,0 +1,176 @@
/**
******************************************************************************
* @file syscalls.c
* @author Auto-generated by STM32CubeMX
* @brief Minimal System calls file
*
* For more information about which c-functions
* need which of these lowlevel functions
* please consult the Newlib libc-manual
******************************************************************************
* @attention
*
* Copyright (c) 2020-2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
/* Variables */
extern int __io_putchar(int ch) __attribute__((weak));
extern int __io_getchar(void) __attribute__((weak));
char *__env[1] = { 0 };
char **environ = __env;
/* Functions */
void initialise_monitor_handles()
{
}
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
(void)pid;
(void)sig;
errno = EINVAL;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
*ptr++ = __io_getchar();
}
return len;
}
__attribute__((weak)) int _write(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar(*ptr++);
}
return len;
}
int _close(int file)
{
(void)file;
return -1;
}
int _fstat(int file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _isatty(int file)
{
(void)file;
return 1;
}
int _lseek(int file, int ptr, int dir)
{
(void)file;
(void)ptr;
(void)dir;
return 0;
}
int _open(char *path, int flags, ...)
{
(void)path;
(void)flags;
/* Pretend like we always fail */
return -1;
}
int _wait(int *status)
{
(void)status;
errno = ECHILD;
return -1;
}
int _unlink(char *name)
{
(void)name;
errno = ENOENT;
return -1;
}
int _times(struct tms *buf)
{
(void)buf;
return -1;
}
int _stat(char *file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
int _link(char *old, char *new)
{
(void)old;
(void)new;
errno = EMLINK;
return -1;
}
int _fork(void)
{
errno = EAGAIN;
return -1;
}
int _execve(char *name, char **argv, char **env)
{
(void)name;
(void)argv;
(void)env;
errno = ENOMEM;
return -1;
}

79
Core/Src/sysmem.c Normal file
View File

@ -0,0 +1,79 @@
/**
******************************************************************************
* @file sysmem.c
* @author Generated by STM32CubeMX
* @brief System Memory calls file
*
* For more information about which C functions
* need which of these lowlevel functions
* please consult the newlib libc manual
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes */
#include <errno.h>
#include <stdint.h>
/**
* Pointer to the current high watermark of the heap usage
*/
static uint8_t *__sbrk_heap_end = NULL;
/**
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
* and others from the C library
*
* @verbatim
* ############################################################################
* # .data # .bss # newlib heap # MSP stack #
* # # # # Reserved by _Min_Stack_Size #
* ############################################################################
* ^-- RAM start ^-- _end _estack, RAM end --^
* @endverbatim
*
* This implementation starts allocating at the '_end' linker symbol
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
* The implementation considers '_estack' linker symbol to be RAM end
* NOTE: If the MSP stack, at any point during execution, grows larger than the
* reserved size, please increase the '_Min_Stack_Size'.
*
* @param incr Memory size
* @return Pointer to allocated memory
*/
void *_sbrk(ptrdiff_t incr)
{
extern uint8_t _end; /* Symbol defined in the linker script */
extern uint8_t _estack; /* Symbol defined in the linker script */
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
const uint8_t *max_heap = (uint8_t *)stack_limit;
uint8_t *prev_heap_end;
/* Initialize heap end at first call */
if (NULL == __sbrk_heap_end)
{
__sbrk_heap_end = &_end;
}
/* Protect heap from growing into the reserved MSP stack */
if (__sbrk_heap_end + incr > max_heap)
{
errno = ENOMEM;
return (void *)-1;
}
prev_heap_end = __sbrk_heap_end;
__sbrk_heap_end += incr;
return (void *)prev_heap_end;
}

View File

@ -1996,9 +1996,9 @@ typedef struct
#define ADC34_CSR_ADRDY_EOS_SLV_Pos (19U)
#define ADC34_CSR_ADRDY_EOS_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_EOS_SLV_Pos) /*!< 0x00080000 */
#define ADC34_CSR_ADRDY_EOS_SLV ADC34_CSR_ADRDY_EOS_SLV_Msk /*!< End of regular sequence flag of the slave ADC */
#define ADC12_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC12_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC12_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC12_CSR_ADRDY_OVR_SLV ADC12_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC34_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC34_CSR_ADRDY_OVR_SLV ADC34_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_JEOC_SLV_Pos (21U)
#define ADC34_CSR_ADRDY_JEOC_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_JEOC_SLV_Pos) /*!< 0x00200000 */
#define ADC34_CSR_ADRDY_JEOC_SLV ADC34_CSR_ADRDY_JEOC_SLV_Msk /*!< End of injected conversion of the slave ADC */

View File

@ -2107,9 +2107,9 @@ typedef struct
#define ADC34_CSR_ADRDY_EOS_SLV_Pos (19U)
#define ADC34_CSR_ADRDY_EOS_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_EOS_SLV_Pos) /*!< 0x00080000 */
#define ADC34_CSR_ADRDY_EOS_SLV ADC34_CSR_ADRDY_EOS_SLV_Msk /*!< End of regular sequence flag of the slave ADC */
#define ADC12_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC12_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC12_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC12_CSR_ADRDY_OVR_SLV ADC12_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC34_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC34_CSR_ADRDY_OVR_SLV ADC34_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_JEOC_SLV_Pos (21U)
#define ADC34_CSR_ADRDY_JEOC_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_JEOC_SLV_Pos) /*!< 0x00200000 */
#define ADC34_CSR_ADRDY_JEOC_SLV ADC34_CSR_ADRDY_JEOC_SLV_Msk /*!< End of injected conversion of the slave ADC */

View File

@ -1998,9 +1998,9 @@ typedef struct
#define ADC34_CSR_ADRDY_EOS_SLV_Pos (19U)
#define ADC34_CSR_ADRDY_EOS_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_EOS_SLV_Pos) /*!< 0x00080000 */
#define ADC34_CSR_ADRDY_EOS_SLV ADC34_CSR_ADRDY_EOS_SLV_Msk /*!< End of regular sequence flag of the slave ADC */
#define ADC12_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC12_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC12_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC12_CSR_ADRDY_OVR_SLV ADC12_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC34_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC34_CSR_ADRDY_OVR_SLV ADC34_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_JEOC_SLV_Pos (21U)
#define ADC34_CSR_ADRDY_JEOC_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_JEOC_SLV_Pos) /*!< 0x00200000 */
#define ADC34_CSR_ADRDY_JEOC_SLV ADC34_CSR_ADRDY_JEOC_SLV_Msk /*!< End of injected conversion of the slave ADC */

View File

@ -1954,9 +1954,9 @@ typedef struct
#define ADC34_CSR_ADRDY_EOS_SLV_Pos (19U)
#define ADC34_CSR_ADRDY_EOS_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_EOS_SLV_Pos) /*!< 0x00080000 */
#define ADC34_CSR_ADRDY_EOS_SLV ADC34_CSR_ADRDY_EOS_SLV_Msk /*!< End of regular sequence flag of the slave ADC */
#define ADC12_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC12_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC12_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC12_CSR_ADRDY_OVR_SLV ADC12_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC34_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC34_CSR_ADRDY_OVR_SLV ADC34_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_JEOC_SLV_Pos (21U)
#define ADC34_CSR_ADRDY_JEOC_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_JEOC_SLV_Pos) /*!< 0x00200000 */
#define ADC34_CSR_ADRDY_JEOC_SLV ADC34_CSR_ADRDY_JEOC_SLV_Msk /*!< End of injected conversion of the slave ADC */

View File

@ -7363,9 +7363,13 @@ typedef struct
#define CEC_TXDR_TXD CEC_TXDR_TXD_Msk /*!< CEC Tx Data */
/******************* Bit definition for CEC_RXDR register *******************/
#define CEC_TXDR_RXD_Pos (0U)
#define CEC_TXDR_RXD_Msk (0xFFUL << CEC_TXDR_RXD_Pos) /*!< 0x000000FF */
#define CEC_TXDR_RXD CEC_TXDR_RXD_Msk /*!< CEC Rx Data */
#define CEC_RXDR_RXD_Pos (0U)
#define CEC_RXDR_RXD_Msk (0xFFUL << CEC_RXDR_RXD_Pos) /*!< 0x000000FF */
#define CEC_RXDR_RXD CEC_RXDR_RXD_Msk /*!< CEC Rx Data */
/* Legacy aliases */
#define CEC_TXDR_RXD_Pos CEC_RXDR_RXD_Pos
#define CEC_TXDR_RXD_Msk CEC_RXDR_RXD_Msk
#define CEC_TXDR_RXD CEC_RXDR_RXD
/******************* Bit definition for CEC_ISR register ********************/
#define CEC_ISR_RXBR_Pos (0U)

View File

@ -7304,9 +7304,13 @@ typedef struct
#define CEC_TXDR_TXD CEC_TXDR_TXD_Msk /*!< CEC Tx Data */
/******************* Bit definition for CEC_RXDR register *******************/
#define CEC_TXDR_RXD_Pos (0U)
#define CEC_TXDR_RXD_Msk (0xFFUL << CEC_TXDR_RXD_Pos) /*!< 0x000000FF */
#define CEC_TXDR_RXD CEC_TXDR_RXD_Msk /*!< CEC Rx Data */
#define CEC_RXDR_RXD_Pos (0U)
#define CEC_RXDR_RXD_Msk (0xFFUL << CEC_RXDR_RXD_Pos) /*!< 0x000000FF */
#define CEC_RXDR_RXD CEC_RXDR_RXD_Msk /*!< CEC Rx Data */
/* Legacy aliases */
#define CEC_TXDR_RXD_Pos CEC_RXDR_RXD_Pos
#define CEC_TXDR_RXD_Msk CEC_RXDR_RXD_Msk
#define CEC_TXDR_RXD CEC_RXDR_RXD
/******************* Bit definition for CEC_ISR register ********************/
#define CEC_ISR_RXBR_Pos (0U)

View File

@ -2063,9 +2063,9 @@ typedef struct
#define ADC34_CSR_ADRDY_EOS_SLV_Pos (19U)
#define ADC34_CSR_ADRDY_EOS_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_EOS_SLV_Pos) /*!< 0x00080000 */
#define ADC34_CSR_ADRDY_EOS_SLV ADC34_CSR_ADRDY_EOS_SLV_Msk /*!< End of regular sequence flag of the slave ADC */
#define ADC12_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC12_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC12_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC12_CSR_ADRDY_OVR_SLV ADC12_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_OVR_SLV_Pos (20U)
#define ADC34_CSR_ADRDY_OVR_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_OVR_SLV_Pos) /*!< 0x00100000 */
#define ADC34_CSR_ADRDY_OVR_SLV ADC34_CSR_ADRDY_OVR_SLV_Msk /*!< Overrun flag of the slave ADC */
#define ADC34_CSR_ADRDY_JEOC_SLV_Pos (21U)
#define ADC34_CSR_ADRDY_JEOC_SLV_Msk (0x1UL << ADC34_CSR_ADRDY_JEOC_SLV_Pos) /*!< 0x00200000 */
#define ADC34_CSR_ADRDY_JEOC_SLV ADC34_CSR_ADRDY_JEOC_SLV_Msk /*!< End of injected conversion of the slave ADC */

View File

@ -102,11 +102,11 @@
#endif /* USE_HAL_DRIVER */
/**
* @brief CMSIS Device version number V2.3.7
* @brief CMSIS Device version number V2.3.8
*/
#define __STM32F3_CMSIS_VERSION_MAIN (0x02) /*!< [31:24] main version */
#define __STM32F3_CMSIS_VERSION_SUB1 (0x03) /*!< [23:16] sub1 version */
#define __STM32F3_CMSIS_VERSION_SUB2 (0x07) /*!< [15:8] sub2 version */
#define __STM32F3_CMSIS_VERSION_SUB2 (0x08) /*!< [15:8] sub2 version */
#define __STM32F3_CMSIS_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM32F3_CMSIS_VERSION ((__STM32F3_CMSIS_VERSION_MAIN << 24)\
|(__STM32F3_CMSIS_VERSION_SUB1 << 16)\

View File

@ -7,7 +7,7 @@
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* Copyright (c) 2021 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
@ -37,16 +37,12 @@ extern "C" {
#define AES_CLEARFLAG_CCF CRYP_CLEARFLAG_CCF
#define AES_CLEARFLAG_RDERR CRYP_CLEARFLAG_RDERR
#define AES_CLEARFLAG_WRERR CRYP_CLEARFLAG_WRERR
#if defined(STM32U5) || defined(STM32H7) || defined(STM32MP1)
#if defined(STM32H7) || defined(STM32MP1)
#define CRYP_DATATYPE_32B CRYP_NO_SWAP
#define CRYP_DATATYPE_16B CRYP_HALFWORD_SWAP
#define CRYP_DATATYPE_8B CRYP_BYTE_SWAP
#define CRYP_DATATYPE_1B CRYP_BIT_SWAP
#if defined(STM32U5)
#define CRYP_CCF_CLEAR CRYP_CLEAR_CCF
#define CRYP_ERR_CLEAR CRYP_CLEAR_RWEIF
#endif /* STM32U5 */
#endif /* STM32U5 || STM32H7 || STM32MP1 */
#endif /* STM32H7 || STM32MP1 */
/**
* @}
*/
@ -279,7 +275,7 @@ extern "C" {
#define DAC_WAVEGENERATION_NOISE DAC_WAVE_NOISE
#define DAC_WAVEGENERATION_TRIANGLE DAC_WAVE_TRIANGLE
#if defined(STM32G4) || defined(STM32L5) || defined(STM32H7) || defined (STM32U5)
#if defined(STM32G4) || defined(STM32H7) || defined (STM32U5)
#define DAC_CHIPCONNECT_DISABLE DAC_CHIPCONNECT_EXTERNAL
#define DAC_CHIPCONNECT_ENABLE DAC_CHIPCONNECT_INTERNAL
#endif
@ -552,6 +548,16 @@ extern "C" {
#define OB_SRAM134_RST_ERASE OB_SRAM_RST_ERASE
#define OB_SRAM134_RST_NOT_ERASE OB_SRAM_RST_NOT_ERASE
#endif /* STM32U5 */
#if defined(STM32U0)
#define OB_USER_nRST_STOP OB_USER_NRST_STOP
#define OB_USER_nRST_STDBY OB_USER_NRST_STDBY
#define OB_USER_nRST_SHDW OB_USER_NRST_SHDW
#define OB_USER_nBOOT_SEL OB_USER_NBOOT_SEL
#define OB_USER_nBOOT0 OB_USER_NBOOT0
#define OB_USER_nBOOT1 OB_USER_NBOOT1
#define OB_nBOOT0_RESET OB_NBOOT0_RESET
#define OB_nBOOT0_SET OB_NBOOT0_SET
#endif /* STM32U0 */
/**
* @}
@ -1243,10 +1249,10 @@ extern "C" {
#define RTC_TAMPERPIN_PA0 RTC_TAMPERPIN_POS1
#define RTC_TAMPERPIN_PI8 RTC_TAMPERPIN_POS1
#if defined(STM32H5)
#if defined(STM32H5) || defined(STM32H7RS)
#define TAMP_SECRETDEVICE_ERASE_NONE TAMP_DEVICESECRETS_ERASE_NONE
#define TAMP_SECRETDEVICE_ERASE_BKP_SRAM TAMP_DEVICESECRETS_ERASE_BKPSRAM
#endif /* STM32H5 */
#endif /* STM32H5 || STM32H7RS */
#if defined(STM32WBA)
#define TAMP_SECRETDEVICE_ERASE_NONE TAMP_DEVICESECRETS_ERASE_NONE
@ -1258,10 +1264,10 @@ extern "C" {
#define TAMP_SECRETDEVICE_ERASE_ALL TAMP_DEVICESECRETS_ERASE_ALL
#endif /* STM32WBA */
#if defined(STM32H5) || defined(STM32WBA)
#if defined(STM32H5) || defined(STM32WBA) || defined(STM32H7RS)
#define TAMP_SECRETDEVICE_ERASE_DISABLE TAMP_DEVICESECRETS_ERASE_NONE
#define TAMP_SECRETDEVICE_ERASE_ENABLE TAMP_SECRETDEVICE_ERASE_ALL
#endif /* STM32H5 || STM32WBA */
#endif /* STM32H5 || STM32WBA || STM32H7RS */
#if defined(STM32F7)
#define RTC_TAMPCR_TAMPXE RTC_TAMPER_ENABLE_BITS_MASK
@ -1599,6 +1605,8 @@ extern "C" {
#define ETH_MAC_SMALL_FIFO_RW_ACTIVE 0x00000006U /* MAC small FIFO read / write controllers active */
#define ETH_MAC_MII_RECEIVE_PROTOCOL_ACTIVE 0x00000001U /* MAC MII receive protocol engine active */
#define ETH_TxPacketConfig ETH_TxPacketConfigTypeDef /* Transmit Packet Configuration structure definition */
/**
* @}
*/
@ -1991,12 +1999,12 @@ extern "C" {
/** @defgroup HAL_RTC_Aliased_Functions HAL RTC Aliased Functions maintained for legacy purpose
* @{
*/
#if defined(STM32H5) || defined(STM32WBA)
#if defined(STM32H5) || defined(STM32WBA) || defined(STM32H7RS)
#define HAL_RTCEx_SetBoothardwareKey HAL_RTCEx_LockBootHardwareKey
#define HAL_RTCEx_BKUPBlock_Enable HAL_RTCEx_BKUPBlock
#define HAL_RTCEx_BKUPBlock_Disable HAL_RTCEx_BKUPUnblock
#define HAL_RTCEx_Erase_SecretDev_Conf HAL_RTCEx_ConfigEraseDeviceSecrets
#endif /* STM32H5 || STM32WBA */
#endif /* STM32H5 || STM32WBA || STM32H7RS */
/**
* @}
@ -2723,6 +2731,12 @@ extern "C" {
#define __APB1_RELEASE_RESET __HAL_RCC_APB1_RELEASE_RESET
#define __APB2_FORCE_RESET __HAL_RCC_APB2_FORCE_RESET
#define __APB2_RELEASE_RESET __HAL_RCC_APB2_RELEASE_RESET
#if defined(STM32C0)
#define __HAL_RCC_APB1_FORCE_RESET __HAL_RCC_APB1_GRP1_FORCE_RESET
#define __HAL_RCC_APB1_RELEASE_RESET __HAL_RCC_APB1_GRP1_RELEASE_RESET
#define __HAL_RCC_APB2_FORCE_RESET __HAL_RCC_APB1_GRP2_FORCE_RESET
#define __HAL_RCC_APB2_RELEASE_RESET __HAL_RCC_APB1_GRP2_RELEASE_RESET
#endif /* STM32C0 */
#define __BKP_CLK_DISABLE __HAL_RCC_BKP_CLK_DISABLE
#define __BKP_CLK_ENABLE __HAL_RCC_BKP_CLK_ENABLE
#define __BKP_FORCE_RESET __HAL_RCC_BKP_FORCE_RESET
@ -3646,8 +3660,12 @@ extern "C" {
#define RCC_MCOSOURCE_PLLCLK_NODIV RCC_MCO1SOURCE_PLLCLK
#define RCC_MCOSOURCE_PLLCLK_DIV2 RCC_MCO1SOURCE_PLLCLK_DIV2
#if defined(STM32U0)
#define RCC_SYSCLKSOURCE_STATUS_PLLR RCC_SYSCLKSOURCE_STATUS_PLLCLK
#endif
#if defined(STM32L4) || defined(STM32WB) || defined(STM32G0) || defined(STM32G4) || defined(STM32L5) || \
defined(STM32WL) || defined(STM32C0)
defined(STM32WL) || defined(STM32C0) || defined(STM32H7RS) || defined(STM32U0)
#define RCC_RTCCLKSOURCE_NO_CLK RCC_RTCCLKSOURCE_NONE
#else
#define RCC_RTCCLKSOURCE_NONE RCC_RTCCLKSOURCE_NO_CLK
@ -3749,8 +3767,10 @@ extern "C" {
#define __HAL_RCC_GET_DFSDM_SOURCE __HAL_RCC_GET_DFSDM1_SOURCE
#define RCC_DFSDM1CLKSOURCE_PCLK RCC_DFSDM1CLKSOURCE_PCLK2
#define RCC_SWPMI1CLKSOURCE_PCLK RCC_SWPMI1CLKSOURCE_PCLK1
#if !defined(STM32U0)
#define RCC_LPTIM1CLKSOURCE_PCLK RCC_LPTIM1CLKSOURCE_PCLK1
#define RCC_LPTIM2CLKSOURCE_PCLK RCC_LPTIM2CLKSOURCE_PCLK1
#endif
#define RCC_DFSDM1AUDIOCLKSOURCE_I2SAPB1 RCC_DFSDM1AUDIOCLKSOURCE_I2S1
#define RCC_DFSDM1AUDIOCLKSOURCE_I2SAPB2 RCC_DFSDM1AUDIOCLKSOURCE_I2S2
@ -3896,7 +3916,8 @@ extern "C" {
*/
#if defined (STM32G0) || defined (STM32L5) || defined (STM32L412xx) || defined (STM32L422xx) || \
defined (STM32L4P5xx)|| defined (STM32L4Q5xx) || defined (STM32G4) || defined (STM32WL) || defined (STM32U5) || \
defined (STM32WBA) || defined (STM32H5) || defined (STM32C0)
defined (STM32WBA) || defined (STM32H5) || \
defined (STM32C0) || defined (STM32H7RS) || defined (STM32U0)
#else
#define __HAL_RTC_CLEAR_FLAG __HAL_RTC_EXTI_CLEAR_FLAG
#endif
@ -3931,6 +3952,13 @@ extern "C" {
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_GENERATE_SWIT()))
#endif /* STM32F1 */
#if defined (STM32F0) || defined (STM32F2) || defined (STM32F3) || defined (STM32F4) || defined (STM32F7) || \
defined (STM32H7) || \
defined (STM32L0) || defined (STM32L1) || \
defined (STM32WB)
#define __HAL_RTC_TAMPER_GET_IT __HAL_RTC_TAMPER_GET_FLAG
#endif
#define IS_ALARM IS_RTC_ALARM
#define IS_ALARM_MASK IS_RTC_ALARM_MASK
#define IS_TAMPER IS_RTC_TAMPER
@ -4212,6 +4240,9 @@ extern "C" {
#define __HAL_TIM_GetCompare __HAL_TIM_GET_COMPARE
#define TIM_BREAKINPUTSOURCE_DFSDM TIM_BREAKINPUTSOURCE_DFSDM1
#define TIM_OCMODE_ASSYMETRIC_PWM1 TIM_OCMODE_ASYMMETRIC_PWM1
#define TIM_OCMODE_ASSYMETRIC_PWM2 TIM_OCMODE_ASYMMETRIC_PWM2
/**
* @}
*/

View File

@ -204,7 +204,11 @@ typedef struct
/**
* @brief CAN handle Structure definition
*/
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
typedef struct __CAN_HandleTypeDef
#else
typedef struct
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
{
CAN_TypeDef *Instance; /*!< Register base address */

View File

@ -271,6 +271,8 @@ uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb);
*/
/* Peripheral Control functions ***********************************************/
#if (__MPU_PRESENT == 1U)
void HAL_MPU_EnableRegion(uint32_t RegionNumber);
void HAL_MPU_DisableRegion(uint32_t RegionNumber);
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init);
#endif /* __MPU_PRESENT */
uint32_t HAL_NVIC_GetPriorityGrouping(void);

View File

@ -318,7 +318,7 @@ uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t
/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions
* @{
*/
HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc);
HAL_CRC_StateTypeDef HAL_CRC_GetState(const CRC_HandleTypeDef *hcrc);
/**
* @}
*/

View File

@ -118,8 +118,6 @@ typedef enum
HAL_I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /*!< Address Listen Mode and Data Reception
process is ongoing */
HAL_I2C_STATE_ABORT = 0x60U, /*!< Abort user request ongoing */
HAL_I2C_STATE_TIMEOUT = 0xA0U, /*!< Timeout state */
HAL_I2C_STATE_ERROR = 0xE0U /*!< Error */
} HAL_I2C_StateTypeDef;

View File

@ -24,10 +24,10 @@
extern "C" {
#endif
#if defined(FMC_BANK3)
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_ll_fmc.h"
#if defined(FMC_BANK3)
/** @addtogroup STM32F3xx_HAL_Driver
* @{
@ -105,7 +105,6 @@ typedef struct
FunctionalState ExtraCommandEnable; /*!< NAND extra command needed for Page reading mode. This
parameter is mandatory for some NAND parts after the read
command (NAND_CMD_AREA_TRUE1) and before DATA reading sequence.
Example: Toshiba THTH58BYG3S0HBAI6.
This parameter could be ENABLE or DISABLE
Please check the Read Mode sequence in the NAND device datasheet */
} NAND_DeviceConfigTypeDef;

View File

@ -24,10 +24,10 @@
extern "C" {
#endif
#if defined(FMC_BANK1)
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_ll_fmc.h"
#if defined(FMC_BANK1)
/** @addtogroup STM32F3xx_HAL_Driver
* @{
@ -184,7 +184,7 @@ HAL_StatusTypeDef HAL_NOR_Init(NOR_HandleTypeDef *hnor, FMC_NORSRAM_TimingTypeDe
HAL_StatusTypeDef HAL_NOR_DeInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor);
void HAL_NOR_MspWait(const NOR_HandleTypeDef *hnor, uint32_t Timeout);
void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout);
/**
* @}
*/
@ -235,7 +235,7 @@ HAL_StatusTypeDef HAL_NOR_WriteOperation_Disable(NOR_HandleTypeDef *hnor);
/* NOR State functions ********************************************************/
HAL_NOR_StateTypeDef HAL_NOR_GetState(const NOR_HandleTypeDef *hnor);
HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(const NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout);
HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout);
/**
* @}
*/

View File

@ -334,7 +334,7 @@ HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_EP_Abort(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd);
HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd);
uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr);
uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef const *hpcd, uint8_t ep_addr);
/**
* @}
*/
@ -343,7 +343,7 @@ uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr
/** @addtogroup PCD_Exported_Functions_Group4 Peripheral State functions
* @{
*/
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd);
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef const *hpcd);
/**
* @}
*/
@ -801,20 +801,17 @@ PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd);
\
*(pdwReg) &= 0x3FFU; \
\
if ((wCount) > 62U) \
{ \
PCD_CALC_BLK32((pdwReg), (wCount), wNBlocks); \
} \
else \
{ \
if ((wCount) == 0U) \
{ \
*(pdwReg) |= USB_CNTRX_BLSIZE; \
} \
else \
else if ((wCount) <= 62U) \
{ \
PCD_CALC_BLK2((pdwReg), (wCount), wNBlocks); \
} \
else \
{ \
PCD_CALC_BLK32((pdwReg), (wCount), wNBlocks); \
} \
} while(0) /* PCD_SET_EP_CNT_RX_REG */

View File

@ -795,7 +795,7 @@ HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc);
#define RTC_TIMEOUT_VALUE 1000U
#define RTC_EXTI_LINE_ALARM_EVENT EXTI_IMR_MR17 /*!< External interrupt line 17 Connected to the RTC Alarm event */
#define RTC_EXTI_LINE_ALARM_EVENT EXTI_IMR_MR17 /*!< External interrupt line 17 connected to the RTC Alarm event */
/**
* @}
*/

View File

@ -650,19 +650,6 @@ typedef struct
*/
#define __HAL_RTC_TAMPER_DISABLE_IT(__HANDLE__, __INTERRUPT__) ((__HANDLE__)->Instance->TAFCR &= ~(__INTERRUPT__))
/**
* @brief Check whether the specified RTC Tamper interrupt has occurred or not.
* @param __HANDLE__ specifies the RTC handle.
* @param __INTERRUPT__ specifies the RTC Tamper interrupt to check.
* This parameter can be:
* @arg RTC_IT_TAMP1: Tamper 1 interrupt
* @arg RTC_IT_TAMP2: Tamper 2 interrupt
* @arg RTC_IT_TAMP3: Tamper 3 interrupt
* @note RTC_IT_TAMP3 is not applicable to all devices.
* @retval None
*/
#define __HAL_RTC_TAMPER_GET_IT(__HANDLE__, __INTERRUPT__) (((((__HANDLE__)->Instance->ISR) & ((__INTERRUPT__) >> 4U)) != 0U) ? 1U : 0U)
/**
* @brief Check whether the specified RTC Tamper interrupt has been enabled or not.
* @param __HANDLE__ specifies the RTC handle.
@ -680,8 +667,9 @@ typedef struct
* This parameter can be:
* @arg RTC_FLAG_TAMP1F: Tamper 1 interrupt flag
* @arg RTC_FLAG_TAMP2F: Tamper 2 interrupt flag
* @arg RTC_FLAG_TAMP3F: Tamper 3 interrupt flag
* @note RTC_FLAG_TAMP3F is not applicable to all devices.
* @arg RTC_FLAG_TAMP3F: Tamper 3 interrupt flag (*)
*
* (*) value not applicable to all devices.
* @retval None
*/
#define __HAL_RTC_TAMPER_GET_FLAG(__HANDLE__, __FLAG__) (((((__HANDLE__)->Instance->ISR) & (__FLAG__)) != 0U)? 1U : 0U)
@ -693,8 +681,9 @@ typedef struct
* This parameter can be:
* @arg RTC_FLAG_TAMP1F: Tamper 1 interrupt flag
* @arg RTC_FLAG_TAMP2F: Tamper 2 interrupt flag
* @arg RTC_FLAG_TAMP3F: Tamper 3 interrupt flag
* @note RTC_FLAG_TAMP3F is not applicable to all devices.
* @arg RTC_FLAG_TAMP3F: Tamper 3 interrupt flag (*)
*
* (*) value not applicable to all devices.
* @retval None
*/
#define __HAL_RTC_TAMPER_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->ISR) = (~((__FLAG__) | RTC_ISR_INIT)|((__HANDLE__)->Instance->ISR & RTC_ISR_INIT))

View File

@ -100,8 +100,6 @@ typedef struct
#define HAL_SMBUS_STATE_MASTER_BUSY_RX (0x00000022U) /*!< Master Data Reception process is ongoing */
#define HAL_SMBUS_STATE_SLAVE_BUSY_TX (0x00000032U) /*!< Slave Data Transmission process is ongoing */
#define HAL_SMBUS_STATE_SLAVE_BUSY_RX (0x00000042U) /*!< Slave Data Reception process is ongoing */
#define HAL_SMBUS_STATE_TIMEOUT (0x00000003U) /*!< Timeout state */
#define HAL_SMBUS_STATE_ERROR (0x00000004U) /*!< Reception process is ongoing */
#define HAL_SMBUS_STATE_LISTEN (0x00000008U) /*!< Address Listen Mode is ongoing */
/**
* @}

View File

@ -48,7 +48,7 @@ extern "C" {
/** @addtogroup SPIEx_Exported_Functions_Group1
* @{
*/
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi);
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi);
/**
* @}
*/

View File

@ -24,10 +24,10 @@
extern "C" {
#endif
#if defined(FMC_BANK1)
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_ll_fmc.h"
#if defined(FMC_BANK1)
/** @addtogroup STM32F3xx_HAL_Driver
* @{

View File

@ -398,7 +398,7 @@ typedef struct
void (* BreakCallback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break Callback */
#if defined(TIM_BDTR_BK2E)
void (* Break2Callback)(struct __TIM_HandleTypeDef *htim); /*!< TIM Break2 Callback */
#endif /* */
#endif /* TIM_BDTR_BK2E */
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
} TIM_HandleTypeDef;
@ -426,7 +426,6 @@ typedef enum
, HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID = 0x0FU /*!< TIM Period Elapsed half complete Callback ID */
, HAL_TIM_TRIGGER_CB_ID = 0x10U /*!< TIM Trigger Callback ID */
, HAL_TIM_TRIGGER_HALF_CB_ID = 0x11U /*!< TIM Trigger half complete Callback ID */
, HAL_TIM_IC_CAPTURE_CB_ID = 0x12U /*!< TIM Input Capture Callback ID */
, HAL_TIM_IC_CAPTURE_HALF_CB_ID = 0x13U /*!< TIM Input Capture half complete Callback ID */
, HAL_TIM_OC_DELAY_ELAPSED_CB_ID = 0x14U /*!< TIM Output Compare Delay Elapsed Callback ID */
@ -1037,8 +1036,8 @@ typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to
#define TIM_OCMODE_RETRIGERRABLE_OPM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0) /*!< Retrigerrable OPM mode 2 */
#define TIM_OCMODE_COMBINED_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2) /*!< Combined PWM mode 1 */
#define TIM_OCMODE_COMBINED_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!< Combined PWM mode 2 */
#define TIM_OCMODE_ASSYMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!< Asymmetric PWM mode 1 */
#define TIM_OCMODE_ASSYMETRIC_PWM2 TIM_CCMR1_OC1M /*!< Asymmetric PWM mode 2 */
#define TIM_OCMODE_ASYMMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!< Asymmetric PWM mode 1 */
#define TIM_OCMODE_ASYMMETRIC_PWM2 TIM_CCMR1_OC1M /*!< Asymmetric PWM mode 2 */
#endif /* TIM_CCMR1_OC1M_3 */
/**
* @}
@ -1330,7 +1329,7 @@ typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to
* @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag
* @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag
* @arg TIM_FLAG_CC5: Capture/Compare 5 interrupt flag (*)
* @arg TIM_FLAG_CC5: Capture/Compare 6 interrupt flag (*)
* @arg TIM_FLAG_CC6: Capture/Compare 6 interrupt flag (*)
* @arg TIM_FLAG_COM: Commutation interrupt flag
* @arg TIM_FLAG_TRIGGER: Trigger interrupt flag
* @arg TIM_FLAG_BREAK: Break interrupt flag
@ -1354,7 +1353,7 @@ typedef void (*pTIM_CallbackTypeDef)(TIM_HandleTypeDef *htim); /*!< pointer to
* @arg TIM_FLAG_CC3: Capture/Compare 3 interrupt flag
* @arg TIM_FLAG_CC4: Capture/Compare 4 interrupt flag
* @arg TIM_FLAG_CC5: Capture/Compare 5 interrupt flag (*)
* @arg TIM_FLAG_CC5: Capture/Compare 6 interrupt flag (*)
* @arg TIM_FLAG_CC6: Capture/Compare 6 interrupt flag (*)
* @arg TIM_FLAG_COM: Commutation interrupt flag
* @arg TIM_FLAG_TRIGGER: Trigger interrupt flag
* @arg TIM_FLAG_BREAK: Break interrupt flag
@ -1931,6 +1930,14 @@ mode.
((__PRESCALER__) == TIM_ICPSC_DIV4) || \
((__PRESCALER__) == TIM_ICPSC_DIV8))
#if defined(TIM_CCER_CC5E) && defined(TIM_CCER_CC6E)
#define IS_TIM_CCX_CHANNEL(__INSTANCE__, __CHANNEL__) (IS_TIM_CCX_INSTANCE(__INSTANCE__, __CHANNEL__) && \
((__CHANNEL__) != (TIM_CHANNEL_5)) && \
((__CHANNEL__) != (TIM_CHANNEL_6)))
#else
#define IS_TIM_CCX_CHANNEL(__INSTANCE__, __CHANNEL__) (IS_TIM_CCX_INSTANCE(__INSTANCE__, __CHANNEL__))
#endif /* TIM_CCER_CC5E && TIM_CCER_CC6E */
#define IS_TIM_OPM_MODE(__MODE__) (((__MODE__) == TIM_OPMODE_SINGLE) || \
((__MODE__) == TIM_OPMODE_REPETITIVE))
@ -1959,8 +1966,9 @@ mode.
#define IS_TIM_OPM_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || \
((__CHANNEL__) == TIM_CHANNEL_2))
#define IS_TIM_PERIOD(__HANDLE__, __PERIOD__) \
((IS_TIM_32B_COUNTER_INSTANCE(((__HANDLE__)->Instance)) == 0U) ? (((__PERIOD__) > 0U) && ((__PERIOD__) <= 0x0000FFFFU)) : ((__PERIOD__) > 0U))
#define IS_TIM_PERIOD(__HANDLE__, __PERIOD__) ((IS_TIM_32B_COUNTER_INSTANCE(((__HANDLE__)->Instance)) == 0U) ? \
(((__PERIOD__) > 0U) && ((__PERIOD__) <= 0x0000FFFFU)) : \
((__PERIOD__) > 0U))
#define IS_TIM_COMPLEMENTARY_CHANNELS(__CHANNEL__) (((__CHANNEL__) == TIM_CHANNEL_1) || \
((__CHANNEL__) == TIM_CHANNEL_2) || \
@ -2013,7 +2021,6 @@ mode.
#define IS_TIM_BREAK_FILTER(__BRKFILTER__) ((__BRKFILTER__) <= 0xFUL)
#define IS_TIM_BREAK_STATE(__STATE__) (((__STATE__) == TIM_BREAK_ENABLE) || \
((__STATE__) == TIM_BREAK_DISABLE))
@ -2087,8 +2094,8 @@ mode.
((__MODE__) == TIM_OCMODE_PWM2) || \
((__MODE__) == TIM_OCMODE_COMBINED_PWM1) || \
((__MODE__) == TIM_OCMODE_COMBINED_PWM2) || \
((__MODE__) == TIM_OCMODE_ASSYMETRIC_PWM1) || \
((__MODE__) == TIM_OCMODE_ASSYMETRIC_PWM2))
((__MODE__) == TIM_OCMODE_ASYMMETRIC_PWM1) || \
((__MODE__) == TIM_OCMODE_ASYMMETRIC_PWM2))
#else
#define IS_TIM_PWM_MODE(__MODE__) (((__MODE__) == TIM_OCMODE_PWM1) || \
((__MODE__) == TIM_OCMODE_PWM2))
@ -2450,7 +2457,8 @@ HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_S
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig);
HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig);
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength);
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
uint32_t BurstLength);
HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
uint32_t BurstLength, uint32_t DataLength);

View File

@ -139,7 +139,7 @@ HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *p
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart);
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart);
/**

View File

@ -469,7 +469,6 @@ typedef void (*pUSART_CallbackTypeDef)(USART_HandleTypeDef *husart); /*!< poin
#define __HAL_USART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_USART_CLEAR_FLAG((__HANDLE__), USART_CLEAR_IDLEF)
/** @brief Enable the specified USART interrupt.
* @param __HANDLE__ specifies the USART Handle.
* @param __INTERRUPT__ specifies the USART interrupt source to enable.

View File

@ -183,7 +183,7 @@ typedef void (*pWWDG_CallbackTypeDef)(WWDG_HandleTypeDef *hppp); /*!< pointer t
/**
* @brief Enable the WWDG early wakeup interrupt.
* @param __HANDLE__ WWDG handle
* @param __HANDLE__: WWDG handle
* @param __INTERRUPT__ specifies the interrupt to enable.
* This parameter can be one of the following values:
* @arg WWDG_IT_EWI: Early wakeup interrupt
@ -296,3 +296,4 @@ void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef *hwwdg);
#endif
#endif /* STM32F3xx_HAL_WWDG_H */

View File

@ -8073,7 +8073,8 @@ typedef struct
/* Delay required between ADC disable and ADC calibration start. */
/* Note: On this STM32 series, before starting a calibration, */
/* ADC must be disabled. */
/* ADC must be enabled on STM32F37x and disabled on */
/* other STM32F3 devices. */
/* A minimum number of ADC clock cycles are required */
/* between ADC disable state and calibration start. */
/* Refer to literal @ref LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES. */

View File

@ -184,7 +184,7 @@ __STATIC_INLINE void LL_CRC_SetPolynomialSize(CRC_TypeDef *CRCx, uint32_t PolySi
* @arg @ref LL_CRC_POLYLENGTH_8B
* @arg @ref LL_CRC_POLYLENGTH_7B
*/
__STATIC_INLINE uint32_t LL_CRC_GetPolynomialSize(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_GetPolynomialSize(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_BIT(CRCx->CR, CRC_CR_POLYSIZE));
}
@ -215,7 +215,7 @@ __STATIC_INLINE void LL_CRC_SetInputDataReverseMode(CRC_TypeDef *CRCx, uint32_t
* @arg @ref LL_CRC_INDATA_REVERSE_HALFWORD
* @arg @ref LL_CRC_INDATA_REVERSE_WORD
*/
__STATIC_INLINE uint32_t LL_CRC_GetInputDataReverseMode(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_GetInputDataReverseMode(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_BIT(CRCx->CR, CRC_CR_REV_IN));
}
@ -242,7 +242,7 @@ __STATIC_INLINE void LL_CRC_SetOutputDataReverseMode(CRC_TypeDef *CRCx, uint32_t
* @arg @ref LL_CRC_OUTDATA_REVERSE_NONE
* @arg @ref LL_CRC_OUTDATA_REVERSE_BIT
*/
__STATIC_INLINE uint32_t LL_CRC_GetOutputDataReverseMode(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_GetOutputDataReverseMode(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_BIT(CRCx->CR, CRC_CR_REV_OUT));
}
@ -270,7 +270,7 @@ __STATIC_INLINE void LL_CRC_SetInitialData(CRC_TypeDef *CRCx, uint32_t InitCrc)
* @param CRCx CRC Instance
* @retval Value programmed in Programmable initial CRC value register
*/
__STATIC_INLINE uint32_t LL_CRC_GetInitialData(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_GetInitialData(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_REG(CRCx->INIT));
}
@ -301,7 +301,7 @@ __STATIC_INLINE void LL_CRC_SetPolynomialCoef(CRC_TypeDef *CRCx, uint32_t Polyno
* @param CRCx CRC Instance
* @retval Value programmed in Programmable Polynomial value register
*/
__STATIC_INLINE uint32_t LL_CRC_GetPolynomialCoef(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_GetPolynomialCoef(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_REG(CRCx->POL));
}
@ -359,7 +359,7 @@ __STATIC_INLINE void LL_CRC_FeedData8(CRC_TypeDef *CRCx, uint8_t InData)
* @param CRCx CRC Instance
* @retval Current CRC calculation result as stored in CRC_DR register (32 bits).
*/
__STATIC_INLINE uint32_t LL_CRC_ReadData32(CRC_TypeDef *CRCx)
__STATIC_INLINE uint32_t LL_CRC_ReadData32(const CRC_TypeDef *CRCx)
{
return (uint32_t)(READ_REG(CRCx->DR));
}
@ -371,7 +371,7 @@ __STATIC_INLINE uint32_t LL_CRC_ReadData32(CRC_TypeDef *CRCx)
* @param CRCx CRC Instance
* @retval Current CRC calculation result as stored in CRC_DR register (16 bits).
*/
__STATIC_INLINE uint16_t LL_CRC_ReadData16(CRC_TypeDef *CRCx)
__STATIC_INLINE uint16_t LL_CRC_ReadData16(const CRC_TypeDef *CRCx)
{
return (uint16_t)READ_REG(CRCx->DR);
}
@ -383,7 +383,7 @@ __STATIC_INLINE uint16_t LL_CRC_ReadData16(CRC_TypeDef *CRCx)
* @param CRCx CRC Instance
* @retval Current CRC calculation result as stored in CRC_DR register (8 bits).
*/
__STATIC_INLINE uint8_t LL_CRC_ReadData8(CRC_TypeDef *CRCx)
__STATIC_INLINE uint8_t LL_CRC_ReadData8(const CRC_TypeDef *CRCx)
{
return (uint8_t)READ_REG(CRCx->DR);
}
@ -395,7 +395,7 @@ __STATIC_INLINE uint8_t LL_CRC_ReadData8(CRC_TypeDef *CRCx)
* @param CRCx CRC Instance
* @retval Current CRC calculation result as stored in CRC_DR register (7 bits).
*/
__STATIC_INLINE uint8_t LL_CRC_ReadData7(CRC_TypeDef *CRCx)
__STATIC_INLINE uint8_t LL_CRC_ReadData7(const CRC_TypeDef *CRCx)
{
return (uint8_t)(READ_REG(CRCx->DR) & 0x7FU);
}

View File

@ -2133,11 +2133,18 @@ __STATIC_INLINE uint32_t LL_I2C_GetSlaveAddr(const I2C_TypeDef *I2Cx)
__STATIC_INLINE void LL_I2C_HandleTransfer(I2C_TypeDef *I2Cx, uint32_t SlaveAddr, uint32_t SlaveAddrSize,
uint32_t TransferSize, uint32_t EndMode, uint32_t Request)
{
/* Declaration of tmp to prevent undefined behavior of volatile usage */
uint32_t tmp = ((uint32_t)(((uint32_t)SlaveAddr & I2C_CR2_SADD) | \
((uint32_t)SlaveAddrSize & I2C_CR2_ADD10) | \
(((uint32_t)TransferSize << I2C_CR2_NBYTES_Pos) & I2C_CR2_NBYTES) | \
(uint32_t)EndMode | (uint32_t)Request) & (~0x80000000U));
/* update CR2 register */
MODIFY_REG(I2Cx->CR2, I2C_CR2_SADD | I2C_CR2_ADD10 |
(I2C_CR2_RD_WRN & (uint32_t)(Request >> (31U - I2C_CR2_RD_WRN_Pos))) |
I2C_CR2_START | I2C_CR2_STOP | I2C_CR2_RELOAD |
I2C_CR2_NBYTES | I2C_CR2_AUTOEND | I2C_CR2_HEAD10R,
SlaveAddr | SlaveAddrSize | (TransferSize << I2C_CR2_NBYTES_Pos) | EndMode | Request);
tmp);
}
/**

View File

@ -208,7 +208,7 @@ __STATIC_INLINE void LL_IWDG_SetPrescaler(IWDG_TypeDef *IWDGx, uint32_t Prescale
* @arg @ref LL_IWDG_PRESCALER_128
* @arg @ref LL_IWDG_PRESCALER_256
*/
__STATIC_INLINE uint32_t LL_IWDG_GetPrescaler(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_GetPrescaler(const IWDG_TypeDef *IWDGx)
{
return (READ_REG(IWDGx->PR));
}
@ -231,7 +231,7 @@ __STATIC_INLINE void LL_IWDG_SetReloadCounter(IWDG_TypeDef *IWDGx, uint32_t Coun
* @param IWDGx IWDG Instance
* @retval Value between Min_Data=0 and Max_Data=0x0FFF
*/
__STATIC_INLINE uint32_t LL_IWDG_GetReloadCounter(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_GetReloadCounter(const IWDG_TypeDef *IWDGx)
{
return (READ_REG(IWDGx->RLR));
}
@ -254,7 +254,7 @@ __STATIC_INLINE void LL_IWDG_SetWindow(IWDG_TypeDef *IWDGx, uint32_t Window)
* @param IWDGx IWDG Instance
* @retval Value between Min_Data=0 and Max_Data=0x0FFF
*/
__STATIC_INLINE uint32_t LL_IWDG_GetWindow(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_GetWindow(const IWDG_TypeDef *IWDGx)
{
return (READ_REG(IWDGx->WINR));
}
@ -273,7 +273,7 @@ __STATIC_INLINE uint32_t LL_IWDG_GetWindow(IWDG_TypeDef *IWDGx)
* @param IWDGx IWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_PVU(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_PVU(const IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_PVU) == (IWDG_SR_PVU)) ? 1UL : 0UL);
}
@ -284,7 +284,7 @@ __STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_PVU(IWDG_TypeDef *IWDGx)
* @param IWDGx IWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_RVU(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_RVU(const IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_RVU) == (IWDG_SR_RVU)) ? 1UL : 0UL);
}
@ -295,7 +295,7 @@ __STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_RVU(IWDG_TypeDef *IWDGx)
* @param IWDGx IWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_WVU(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_WVU(const IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_WVU) == (IWDG_SR_WVU)) ? 1UL : 0UL);
}
@ -308,7 +308,7 @@ __STATIC_INLINE uint32_t LL_IWDG_IsActiveFlag_WVU(IWDG_TypeDef *IWDGx)
* @param IWDGx IWDG Instance
* @retval State of bits (1 or 0).
*/
__STATIC_INLINE uint32_t LL_IWDG_IsReady(IWDG_TypeDef *IWDGx)
__STATIC_INLINE uint32_t LL_IWDG_IsReady(const IWDG_TypeDef *IWDGx)
{
return ((READ_BIT(IWDGx->SR, IWDG_SR_PVU | IWDG_SR_RVU | IWDG_SR_WVU) == 0U) ? 1UL : 0UL);
}

View File

@ -416,7 +416,7 @@ typedef struct
* @{
*/
#define LL_RTC_TIMESTAMP_EDGE_RISING 0x00000000U /*!< RTC_TS input rising edge generates a time-stamp event */
#define LL_RTC_TIMESTAMP_EDGE_FALLING RTC_CR_TSEDGE /*!< RTC_TS input falling edge generates a time-stamp even */
#define LL_RTC_TIMESTAMP_EDGE_FALLING RTC_CR_TSEDGE /*!< RTC_TS input falling edge generates a time-stamp event */
/**
* @}
*/
@ -1104,7 +1104,7 @@ __STATIC_INLINE void LL_RTC_TIME_SetFormat(RTC_TypeDef *RTCx, uint32_t TimeForma
/**
* @brief Get time format (AM or PM notation)
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note Read either RTC_SSR or RTC_TR locks the values in the higher-order calendar
* shadow registers until RTC_DR is read (LL_RTC_ReadReg(RTC, DR)).
@ -1138,7 +1138,7 @@ __STATIC_INLINE void LL_RTC_TIME_SetHour(RTC_TypeDef *RTCx, uint32_t Hours)
/**
* @brief Get Hours in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note Read either RTC_SSR or RTC_TR locks the values in the higher-order calendar
* shadow registers until RTC_DR is read (LL_RTC_ReadReg(RTC, DR)).
@ -1173,7 +1173,7 @@ __STATIC_INLINE void LL_RTC_TIME_SetMinute(RTC_TypeDef *RTCx, uint32_t Minutes)
/**
* @brief Get Minutes in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note Read either RTC_SSR or RTC_TR locks the values in the higher-order calendar
* shadow registers until RTC_DR is read (LL_RTC_ReadReg(RTC, DR)).
@ -1208,7 +1208,7 @@ __STATIC_INLINE void LL_RTC_TIME_SetSecond(RTC_TypeDef *RTCx, uint32_t Seconds)
/**
* @brief Get Seconds in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note Read either RTC_SSR or RTC_TR locks the values in the higher-order calendar
* shadow registers until RTC_DR is read (LL_RTC_ReadReg(RTC, DR)).
@ -1258,7 +1258,7 @@ __STATIC_INLINE void LL_RTC_TIME_Config(RTC_TypeDef *RTCx, uint32_t Format12_24,
/**
* @brief Get time (hour, minute and second) in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note Read either RTC_SSR or RTC_TR locks the values in the higher-order calendar
* shadow registers until RTC_DR is read (LL_RTC_ReadReg(RTC, DR)).
@ -1400,7 +1400,7 @@ __STATIC_INLINE void LL_RTC_DATE_SetYear(RTC_TypeDef *RTCx, uint32_t Year)
/**
* @brief Get Year in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note helper macro __LL_RTC_CONVERT_BCD2BIN is available to convert Year from BCD to Binary format
* @rmtoll DR YT LL_RTC_DATE_GetYear\n
@ -1434,7 +1434,7 @@ __STATIC_INLINE void LL_RTC_DATE_SetWeekDay(RTC_TypeDef *RTCx, uint32_t WeekDay)
/**
* @brief Get Week day
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @rmtoll DR WDU LL_RTC_DATE_GetWeekDay
* @param RTCx RTC Instance
@ -1481,7 +1481,7 @@ __STATIC_INLINE void LL_RTC_DATE_SetMonth(RTC_TypeDef *RTCx, uint32_t Month)
/**
* @brief Get Month in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note helper macro __LL_RTC_CONVERT_BCD2BIN is available to convert Month from BCD to Binary format
* @rmtoll DR MT LL_RTC_DATE_GetMonth\n
@ -1523,7 +1523,7 @@ __STATIC_INLINE void LL_RTC_DATE_SetDay(RTC_TypeDef *RTCx, uint32_t Day)
/**
* @brief Get Day in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note helper macro __LL_RTC_CONVERT_BCD2BIN is available to convert Day from BCD to Binary format
* @rmtoll DR DT LL_RTC_DATE_GetDay\n
@ -1585,7 +1585,7 @@ __STATIC_INLINE void LL_RTC_DATE_Config(RTC_TypeDef *RTCx, uint32_t WeekDay, uin
/**
* @brief Get date (WeekDay, Day, Month and Year) in BCD format
* @note if shadow mode is disabled (BYPSHAD=0), need to check if RSF flag is set
* @note if RTC shadow registers are not bypassed (BYPSHAD=0), need to check if RSF flag is set
* before reading this bit
* @note helper macros __LL_RTC_GET_WEEKDAY, __LL_RTC_GET_YEAR, __LL_RTC_GET_MONTH,
* and __LL_RTC_GET_DAY are available to get independently each parameter.

View File

@ -577,7 +577,9 @@ typedef struct
#define LL_TIM_SR_COMIF TIM_SR_COMIF /*!< COM interrupt flag */
#define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */
#define LL_TIM_SR_BIF TIM_SR_BIF /*!< Break interrupt flag */
#if defined(TIM_SR_B2IF)
#define LL_TIM_SR_B2IF TIM_SR_B2IF /*!< Second break interrupt flag */
#endif /* TIM_SR_B2IF */
#define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */
#define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */
#define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */
@ -722,8 +724,12 @@ typedef struct
#define LL_TIM_CHANNEL_CH3 TIM_CCER_CC3E /*!< Timer input/output channel 3 */
#define LL_TIM_CHANNEL_CH3N TIM_CCER_CC3NE /*!< Timer complementary output channel 3 */
#define LL_TIM_CHANNEL_CH4 TIM_CCER_CC4E /*!< Timer input/output channel 4 */
#if defined(TIM_CCER_CC5E)
#define LL_TIM_CHANNEL_CH5 TIM_CCER_CC5E /*!< Timer output channel 5 */
#endif /* TIM_CCER_CC5E */
#if defined(TIM_CCER_CC6E)
#define LL_TIM_CHANNEL_CH6 TIM_CCER_CC6E /*!< Timer output channel 6 */
#endif /* TIM_CCER_CC6E */
#else
#define LL_TIM_CHANNEL_CH1 TIM_CCER_CC1E /*!< Timer input/output channel 1 */
#define LL_TIM_CHANNEL_CH1N TIM_CCER_CC1NE /*!< Timer complementary output channel 1 */
@ -748,6 +754,15 @@ typedef struct
*/
#endif /* USE_FULL_LL_DRIVER */
/** Legacy definitions for compatibility purpose
@cond 0
*/
#define LL_TIM_OCMODE_ASSYMETRIC_PWM1 LL_TIM_OCMODE_ASYMMETRIC_PWM1
#define LL_TIM_OCMODE_ASSYMETRIC_PWM2 LL_TIM_OCMODE_ASYMMETRIC_PWM2
/**
@endcond
*/
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
* @{
*/
@ -768,8 +783,8 @@ typedef struct
#define LL_TIM_OCMODE_COMBINED_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
#endif
#if defined(TIM_CCMR1_OC1M_3)
#define LL_TIM_OCMODE_ASSYMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
#define LL_TIM_OCMODE_ASSYMETRIC_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M) /*!<Asymmetric PWM mode 2*/
#define LL_TIM_OCMODE_ASYMMETRIC_PWM1 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
#define LL_TIM_OCMODE_ASYMMETRIC_PWM2 (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M) /*!<Asymmetric PWM mode 2*/
#endif
/**
* @}
@ -980,11 +995,11 @@ typedef struct
#define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */
#define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/4, N=6 */
#define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */
#define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=6 */
#define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/16, N=5 */
#define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=6 */
#define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2) /*!< fSAMPLING=fDTS/16, N=8 */
#define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */
#define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */
#define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */
@ -1844,6 +1859,17 @@ __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
}
/**
* @brief Indicates whether the capture/compare control bits (CCxE, CCxNE and OCxM) preload is enabled.
* @rmtoll CR2 CCPC LL_TIM_CC_IsEnabledPreload
* @param TIMx Timer instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef *TIMx)
{
return ((READ_BIT(TIMx->CR2, TIM_CR2_CCPC) == (TIM_CR2_CCPC)) ? 1UL : 0UL);
}
/**
* @brief Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
* @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
@ -2094,15 +2120,15 @@ __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel,
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
* @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
* @note The following OC modes are not available on all F3 devices :
* - LL_TIM_OCMODE_RETRIG_OPM1
* - LL_TIM_OCMODE_RETRIG_OPM2
* - LL_TIM_OCMODE_COMBINED_PWM1
* - LL_TIM_OCMODE_COMBINED_PWM2
* - LL_TIM_OCMODE_ASSYMETRIC_PWM1
* - LL_TIM_OCMODE_ASSYMETRIC_PWM2
* - LL_TIM_OCMODE_ASYMMETRIC_PWM1
* - LL_TIM_OCMODE_ASYMMETRIC_PWM2
* @note CH5 and CH6 channels are not available for all F3 devices
* @retval None
*/
@ -2142,8 +2168,8 @@ __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint
* - LL_TIM_OCMODE_RETRIG_OPM2
* - LL_TIM_OCMODE_COMBINED_PWM1
* - LL_TIM_OCMODE_COMBINED_PWM2
* - LL_TIM_OCMODE_ASSYMETRIC_PWM1
* - LL_TIM_OCMODE_ASSYMETRIC_PWM2
* - LL_TIM_OCMODE_ASYMMETRIC_PWM1
* - LL_TIM_OCMODE_ASYMMETRIC_PWM2
* @note CH5 and CH6 channels are not available for all F3 devices
* @retval Returned value can be one of the following values:
* @arg @ref LL_TIM_OCMODE_FROZEN
@ -2158,8 +2184,8 @@ __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint
* @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
* @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASSYMETRIC_PWM2
* @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
* @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
*/
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
{

View File

@ -53,26 +53,26 @@ typedef enum
*/
typedef struct
{
uint32_t dev_endpoints; /*!< Device Endpoints number.
uint8_t dev_endpoints; /*!< Device Endpoints number.
This parameter depends on the used USB core.
This parameter must be a number between Min_Data = 1 and Max_Data = 15 */
uint32_t speed; /*!< USB Core speed.
uint8_t speed; /*!< USB Core speed.
This parameter can be any value of @ref PCD_Speed/HCD_Speed
(HCD_SPEED_xxx, HCD_SPEED_xxx) */
uint32_t ep0_mps; /*!< Set the Endpoint 0 Max Packet size. */
uint8_t ep0_mps; /*!< Set the Endpoint 0 Max Packet size. */
uint32_t phy_itface; /*!< Select the used PHY interface.
uint8_t phy_itface; /*!< Select the used PHY interface.
This parameter can be any value of @ref PCD_PHY_Module/HCD_PHY_Module */
uint32_t Sof_enable; /*!< Enable or disable the output of the SOF signal. */
uint8_t Sof_enable; /*!< Enable or disable the output of the SOF signal. */
uint32_t low_power_enable; /*!< Enable or disable the low Power Mode. */
uint8_t low_power_enable; /*!< Enable or disable the low Power Mode. */
uint32_t lpm_enable; /*!< Enable or disable Link Power Management. */
uint8_t lpm_enable; /*!< Enable or disable Link Power Management. */
uint32_t battery_charging_enable; /*!< Enable or disable Battery charging. */
uint8_t battery_charging_enable; /*!< Enable or disable Battery charging. */
} USB_CfgTypeDef;
typedef struct
@ -203,6 +203,9 @@ HAL_StatusTypeDef USB_EnableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DisableGlobalInt(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_SetCurrentMode(USB_TypeDef *USBx, USB_ModeTypeDef mode);
HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef const *USBx);
HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef const *USBx, uint32_t num);
#if defined (HAL_PCD_MODULE_ENABLED)
HAL_StatusTypeDef USB_ActivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
HAL_StatusTypeDef USB_DeactivateEndpoint(USB_TypeDef *USBx, USB_EPTypeDef *ep);
@ -216,14 +219,14 @@ HAL_StatusTypeDef USB_SetDevAddress(USB_TypeDef *USBx, uint8_t address);
HAL_StatusTypeDef USB_DevConnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_StopDevice(USB_TypeDef *USBx);
uint32_t USB_ReadInterrupts(USB_TypeDef *USBx);
uint32_t USB_ReadInterrupts(USB_TypeDef const *USBx);
HAL_StatusTypeDef USB_ActivateRemoteWakeup(USB_TypeDef *USBx);
HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx);
void USB_WritePMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf,
void USB_WritePMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
void USB_ReadPMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf,
void USB_ReadPMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf,
uint16_t wPMABufAddr, uint16_t wNBytes);
/**

View File

@ -225,7 +225,7 @@ __STATIC_INLINE uint32_t LL_GetFlashSize(void)
* @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro)
* @note When a RTOS is used, it is recommended to avoid changing the SysTick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param Ticks Number of ticks
* @param Ticks Frequency of Ticks (Hz)
* @retval None
*/
__STATIC_INLINE void LL_InitTick(uint32_t HCLKFrequency, uint32_t Ticks)

View File

@ -131,7 +131,7 @@ __STATIC_INLINE void LL_WWDG_Enable(WWDG_TypeDef *WWDGx)
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsEnabled(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_IsEnabled(const WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->CR, WWDG_CR_WDGA) == (WWDG_CR_WDGA)) ? 1UL : 0UL);
}
@ -158,7 +158,7 @@ __STATIC_INLINE void LL_WWDG_SetCounter(WWDG_TypeDef *WWDGx, uint32_t Counter)
* @param WWDGx WWDG Instance
* @retval 7 bit Watchdog Counter value
*/
__STATIC_INLINE uint32_t LL_WWDG_GetCounter(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_GetCounter(const WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CR, WWDG_CR_T));
}
@ -191,7 +191,7 @@ __STATIC_INLINE void LL_WWDG_SetPrescaler(WWDG_TypeDef *WWDGx, uint32_t Prescale
* @arg @ref LL_WWDG_PRESCALER_4
* @arg @ref LL_WWDG_PRESCALER_8
*/
__STATIC_INLINE uint32_t LL_WWDG_GetPrescaler(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_GetPrescaler(const WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CFR, WWDG_CFR_WDGTB));
}
@ -223,7 +223,7 @@ __STATIC_INLINE void LL_WWDG_SetWindow(WWDG_TypeDef *WWDGx, uint32_t Window)
* @param WWDGx WWDG Instance
* @retval 7 bit Watchdog Window value
*/
__STATIC_INLINE uint32_t LL_WWDG_GetWindow(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_GetWindow(const WWDG_TypeDef *WWDGx)
{
return (READ_BIT(WWDGx->CFR, WWDG_CFR_W));
}
@ -244,7 +244,7 @@ __STATIC_INLINE uint32_t LL_WWDG_GetWindow(WWDG_TypeDef *WWDGx)
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsActiveFlag_EWKUP(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_IsActiveFlag_EWKUP(const WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->SR, WWDG_SR_EWIF) == (WWDG_SR_EWIF)) ? 1UL : 0UL);
}
@ -286,7 +286,7 @@ __STATIC_INLINE void LL_WWDG_EnableIT_EWKUP(WWDG_TypeDef *WWDGx)
* @param WWDGx WWDG Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_WWDG_IsEnabledIT_EWKUP(WWDG_TypeDef *WWDGx)
__STATIC_INLINE uint32_t LL_WWDG_IsEnabledIT_EWKUP(const WWDG_TypeDef *WWDGx)
{
return ((READ_BIT(WWDGx->CFR, WWDG_CFR_EWI) == (WWDG_CFR_EWI)) ? 1UL : 0UL);
}

View File

@ -56,7 +56,7 @@
*/
#define __STM32F3xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32F3xx_HAL_VERSION_SUB1 (0x05U) /*!< [23:16] sub1 version */
#define __STM32F3xx_HAL_VERSION_SUB2 (0x07U) /*!< [15:8] sub2 version */
#define __STM32F3xx_HAL_VERSION_SUB2 (0x08U) /*!< [15:8] sub2 version */
#define __STM32F3xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32F3xx_HAL_VERSION ((__STM32F3xx_HAL_VERSION_MAIN << 24U)\
|(__STM32F3xx_HAL_VERSION_SUB1 << 16U)\

View File

@ -4854,6 +4854,9 @@ uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc)
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* Pointer to the common control register to which is belonging hadc */
/* (Depending on STM32F3 product, there may be up to 4 ADC and 2 common */
/* control registers) */

View File

@ -33,7 +33,7 @@
(++) Enable the CAN interface clock using __HAL_RCC_CANx_CLK_ENABLE()
(++) Configure CAN pins
(+++) Enable the clock for the CAN GPIOs
(+++) Configure CAN pins as alternate function open-drain
(+++) Configure CAN pins as alternate function
(++) In case of using interrupts (e.g. HAL_CAN_ActivateNotification())
(+++) Configure the CAN interrupt priority using
HAL_NVIC_SetPriority()
@ -235,6 +235,7 @@
* @{
*/
#define CAN_TIMEOUT_VALUE 10U
#define CAN_WAKEUP_TIMEOUT_COUNTER 1000000U
/**
* @}
*/
@ -328,7 +329,7 @@ HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan)
/* Init the low level hardware: CLOCK, NVIC */
HAL_CAN_MspInit(hcan);
}
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/* Request initialisation */
SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
@ -482,7 +483,7 @@ HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan)
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_CAN_MspDeInit(hcan);
#endif /* (USE_HAL_CAN_REGISTER_CALLBACKS) */
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/* Reset the CAN peripheral */
SET_BIT(hcan->Instance->MCR, CAN_MCR_RESET);
@ -1127,7 +1128,6 @@ HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan)
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan)
{
__IO uint32_t count = 0;
uint32_t timeout = 1000000U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
@ -1143,15 +1143,14 @@ HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan)
count++;
/* Check if timeout is reached */
if (count > timeout)
if (count > CAN_WAKEUP_TIMEOUT_COUNTER)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
return HAL_ERROR;
}
}
while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U);
} while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U);
/* Return function status */
return HAL_OK;

View File

@ -301,6 +301,20 @@
*/
#define COMP_LOCK_DISABLE (0x00000000U)
#define COMP_LOCK_ENABLE COMP_CSR_COMPxLOCK
/* Delay for COMP startup time. */
/* Note: Delay required to reach propagation delay specification. */
/* Literal set to maximum value (refer to device datasheet, */
/* parameter "tSTART"). */
/* Unit: us */
#define COMP_DELAY_STARTUP_US (80UL) /*!< Delay for COMP startup time */
/* Delay for COMP voltage scaler stabilization time. */
/* Literal set to maximum value (refer to device datasheet, */
/* parameter "tSTART_SCALER"). */
/* Unit: us */
#define COMP_DELAY_VOLTAGE_SCALER_STAB_US (200UL) /*!< Delay for COMP voltage scaler stabilization time */
/**
* @}
*/
@ -337,6 +351,8 @@
*/
HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp)
{
uint32_t comp_voltage_scaler_initialized; /* Value "0" if comparator voltage scaler is not initialized */
__IO uint32_t wait_loop_index = 0UL;
HAL_StatusTypeDef status = HAL_OK;
/* Check the COMP handle allocation and lock status */
@ -385,6 +401,9 @@ HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp)
HAL_COMP_MspInit(hcomp);
#endif /* USE_HAL_COMP_REGISTER_CALLBACKS */
/* Memorize voltage scaler state before initialization */
comp_voltage_scaler_initialized = READ_BIT(hcomp->Instance->CSR, (COMP_CSR_COMPxINSEL_1 | COMP_CSR_COMPxINSEL_0));
if (hcomp->State == HAL_COMP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
@ -405,6 +424,22 @@ HAL_StatusTypeDef HAL_COMP_Init(COMP_HandleTypeDef *hcomp)
/* Set COMPxMODE bits according to hcomp->Init.Mode value */
COMP_INIT(hcomp);
/* Delay for COMP scaler bridge voltage stabilization */
/* Apply the delay if voltage scaler bridge is required and not already enabled */
if ((READ_BIT(hcomp->Instance->CSR, (COMP_CSR_COMPxINSEL_1 | COMP_CSR_COMPxINSEL_0)) != 0UL) &&
(comp_voltage_scaler_initialized == 0UL))
{
/* Wait loop initialization and execution */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles, scaling in us split to not */
/* exceed 32 bits register capacity and handle low frequency. */
wait_loop_index = ((COMP_DELAY_VOLTAGE_SCALER_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
/* Initialize the COMP state*/
hcomp->State = HAL_COMP_STATE_READY;
}
@ -677,6 +712,7 @@ HAL_StatusTypeDef HAL_COMP_UnRegisterCallback(COMP_HandleTypeDef *hcomp, HAL_COM
*/
HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp)
{
__IO uint32_t wait_loop_index = 0UL;
HAL_StatusTypeDef status = HAL_OK;
uint32_t extiline = 0U;
@ -729,6 +765,17 @@ HAL_StatusTypeDef HAL_COMP_Start(COMP_HandleTypeDef *hcomp)
__HAL_COMP_ENABLE(hcomp);
hcomp->State = HAL_COMP_STATE_BUSY;
/* Delay for COMP startup time */
/* Wait loop initialization and execution */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles, scaling in us split to not */
/* exceed 32 bits register capacity and handle low frequency. */
wait_loop_index = ((COMP_DELAY_STARTUP_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
else
{

View File

@ -310,6 +310,38 @@ void HAL_MPU_Enable(uint32_t MPU_Control)
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
}
/**
* @brief Enables the MPU Region.
* @retval None
*/
void HAL_MPU_EnableRegion(uint32_t RegionNumber)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(RegionNumber));
/* Set the Region number */
MPU->RNR = RegionNumber;
/* Enable the Region */
SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Disables the MPU Region.
* @retval None
*/
void HAL_MPU_DisableRegion(uint32_t RegionNumber)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(RegionNumber));
/* Set the Region number */
MPU->RNR = RegionNumber;
/* Disable the Region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Initializes and configures the Region and the memory to be protected.
* @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains
@ -321,13 +353,6 @@ void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
if ((MPU_Init->Enable) != RESET)
{
/* Check the parameters */
assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
@ -337,6 +362,13 @@ void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
/* Disable the Region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
/* Apply configuration */
MPU->RBAR = MPU_Init->BaseAddress;
MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
@ -348,12 +380,6 @@ void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
}
else
{
MPU->RBAR = 0x00U;
MPU->RASR = 0x00U;
}
}
#endif /* __MPU_PRESENT */
/**

View File

@ -403,7 +403,7 @@ uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t
* @param hcrc CRC handle
* @retval HAL state
*/
HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc)
HAL_CRC_StateTypeDef HAL_CRC_GetState(const CRC_HandleTypeDef *hcrc)
{
/* Return CRC handle state */
return hcrc->State;

View File

@ -210,8 +210,6 @@ HAL_StatusTypeDef HAL_CRCEx_Output_Data_Reverse(CRC_HandleTypeDef *hcrc, uint32_
}
/**
* @}
*/

View File

@ -382,6 +382,12 @@ HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress,
*/
HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma)
{
/* Check the DMA handle allocation */
if(NULL == hdma)
{
return HAL_ERROR;
}
if(hdma->State != HAL_DMA_STATE_BUSY)
{
/* no transfer ongoing */
@ -431,7 +437,6 @@ HAL_StatusTypeDef HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)
}
else
{
/* Disable DMA IT */
hdma->Instance->CCR &= ~(DMA_IT_TC | DMA_IT_HT | DMA_IT_TE);

View File

@ -64,7 +64,7 @@
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_ClearConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
@ -75,7 +75,7 @@
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_ClearPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().

View File

@ -684,7 +684,7 @@ static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
#if defined(OB_WRP0_WRP0)
if(WRP0_Data != 0xFFU)
{
OB->WRP0 |= WRP0_Data;
OB->WRP0 = WRP0_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
@ -694,7 +694,7 @@ static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
#if defined(OB_WRP1_WRP1)
if((status == HAL_OK) && (WRP1_Data != 0xFFU))
{
OB->WRP1 |= WRP1_Data;
OB->WRP1 = WRP1_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
@ -704,7 +704,7 @@ static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
#if defined(OB_WRP2_WRP2)
if((status == HAL_OK) && (WRP2_Data != 0xFFU))
{
OB->WRP2 |= WRP2_Data;
OB->WRP2 = WRP2_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
@ -714,7 +714,7 @@ static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WriteProtectPage)
#if defined(OB_WRP3_WRP3)
if((status == HAL_OK) && (WRP3_Data != 0xFFU))
{
OB->WRP3 |= WRP3_Data;
OB->WRP3 = WRP3_Data;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);

View File

@ -458,7 +458,7 @@ void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
* until the next reset.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32F3 family
* @param GPIO_Pin specifies the port bits to be locked.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* This parameter can be any combination of GPIO_PIN_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

View File

@ -84,7 +84,6 @@
any restriction. HRTIM waveform modes are managed through the set of
functions named HAL_HRTIM_Waveform<Function>
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
@ -8384,7 +8383,7 @@ static uint32_t HRTIM_GetITFromOCMode(const HRTIM_HandleTypeDef * hhrtim,
case HRTIM_OUTPUT_TD1:
case HRTIM_OUTPUT_TE1:
{
/* Retrieves actual OC mode and set interrupt accordingly */
/* Retreives actual OC mode and set interrupt accordingly */
hrtim_set = hhrtim->Instance->sTimerxRegs[TimerIdx].SETx1R;
hrtim_reset = hhrtim->Instance->sTimerxRegs[TimerIdx].RSTx1R;
@ -8419,7 +8418,7 @@ static uint32_t HRTIM_GetITFromOCMode(const HRTIM_HandleTypeDef * hhrtim,
case HRTIM_OUTPUT_TD2:
case HRTIM_OUTPUT_TE2:
{
/* Retrieves actual OC mode and set interrupt accordingly */
/* Retreives actual OC mode and set interrupt accordingly */
hrtim_set = hhrtim->Instance->sTimerxRegs[TimerIdx].SETx2R;
hrtim_reset = hhrtim->Instance->sTimerxRegs[TimerIdx].RSTx2R;
@ -8490,7 +8489,7 @@ static uint32_t HRTIM_GetDMAFromOCMode(const HRTIM_HandleTypeDef * hhrtim,
case HRTIM_OUTPUT_TD1:
case HRTIM_OUTPUT_TE1:
{
/* Retrieves actual OC mode and set dma_request accordingly */
/* Retreives actual OC mode and set dma_request accordingly */
hrtim_set = hhrtim->Instance->sTimerxRegs[TimerIdx].SETx1R;
hrtim_reset = hhrtim->Instance->sTimerxRegs[TimerIdx].RSTx1R;
@ -8525,7 +8524,7 @@ static uint32_t HRTIM_GetDMAFromOCMode(const HRTIM_HandleTypeDef * hhrtim,
case HRTIM_OUTPUT_TD2:
case HRTIM_OUTPUT_TE2:
{
/* Retrieves actual OC mode and set dma_request accordingly */
/* Retreives actual OC mode and set dma_request accordingly */
hrtim_set = hhrtim->Instance->sTimerxRegs[TimerIdx].SETx2R;
hrtim_reset = hhrtim->Instance->sTimerxRegs[TimerIdx].RSTx2R;

View File

@ -90,7 +90,7 @@
add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback()
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can
add their own code by customization of function pointer HAL_I2C_ErrorCallback()
(+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can
add their own code by customization of function pointer HAL_I2C_AbortCpltCallback()
(+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro.
@ -156,7 +156,7 @@
HAL_I2C_Master_Seq_Receive_IT() or using HAL_I2C_Master_Seq_Receive_DMA()
(+++) At reception end of current frame transfer, HAL_I2C_MasterRxCpltCallback() is executed and users can
add their own code by customization of function pointer HAL_I2C_MasterRxCpltCallback()
(++) Abort a master IT or DMA I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(++) Abort a master or memory IT or DMA I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+++) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can
add their own code by customization of function pointer HAL_I2C_AbortCpltCallback()
(++) Enable/disable the Address listen mode in slave I2C mode using HAL_I2C_EnableListen_IT()
@ -214,7 +214,7 @@
add their own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback()
(+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and users can
add their own code by customization of function pointer HAL_I2C_ErrorCallback()
(+) Abort a master I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) Abort a master or memory I2C process communication with Interrupt using HAL_I2C_Master_Abort_IT()
(+) End of abort process, HAL_I2C_AbortCpltCallback() is executed and users can
add their own code by customization of function pointer HAL_I2C_AbortCpltCallback()
(+) Discard a slave I2C process communication using __HAL_I2C_GENERATE_NACK() macro.
@ -608,7 +608,12 @@ HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c)
/* Configure I2Cx: Addressing Master mode */
if (hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT)
{
hi2c->Instance->CR2 = (I2C_CR2_ADD10);
SET_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10);
}
else
{
/* Clear the I2C ADD10 bit */
CLEAR_BIT(hi2c->Instance->CR2, I2C_CR2_ADD10);
}
/* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */
hi2c->Instance->CR2 |= (I2C_CR2_AUTOEND | I2C_CR2_NACK);
@ -1115,6 +1120,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevA
uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint32_t xfermode;
if (hi2c->State == HAL_I2C_STATE_READY)
{
@ -1138,18 +1144,39 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevA
hi2c->XferCount = Size;
hi2c->XferISR = NULL;
/* Send Slave Address */
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE,
I2C_GENERATE_START_WRITE);
xfermode = I2C_RELOAD_MODE;
}
else
{
hi2c->XferSize = hi2c->XferCount;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE,
xfermode = I2C_AUTOEND_MODE;
}
if (hi2c->XferSize > 0U)
{
/* Preload TX register */
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
/* Increment Buffer pointer */
hi2c->pBuffPtr++;
hi2c->XferCount--;
hi2c->XferSize--;
/* Send Slave Address */
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U), xfermode,
I2C_GENERATE_START_WRITE);
}
else
{
/* Send Slave Address */
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode,
I2C_GENERATE_START_WRITE);
}
@ -1261,7 +1288,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAd
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
hi2c->XferSize = 1U;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE,
I2C_GENERATE_START_READ);
}
@ -1352,6 +1379,8 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
uint32_t Timeout)
{
uint32_t tickstart;
uint16_t tmpXferCount;
HAL_StatusTypeDef error;
if (hi2c->State == HAL_I2C_STATE_READY)
{
@ -1378,14 +1407,6 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
/* Enable Address Acknowledge */
hi2c->Instance->CR2 &= ~I2C_CR2_NACK;
/* Wait until ADDR flag is set */
if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hi2c->Instance->CR2 |= I2C_CR2_NACK;
return HAL_ERROR;
}
/* Preload TX data if no stretch enable */
if (hi2c->Init.NoStretchMode == I2C_NOSTRETCH_ENABLE)
{
@ -1399,6 +1420,18 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
hi2c->XferCount--;
}
/* Wait until ADDR flag is set */
if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout, tickstart) != HAL_OK)
{
/* Disable Address Acknowledge */
hi2c->Instance->CR2 |= I2C_CR2_NACK;
/* Flush TX register */
I2C_Flush_TXDR(hi2c);
return HAL_ERROR;
}
/* Clear ADDR flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ADDR);
@ -1410,6 +1443,10 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
{
/* Disable Address Acknowledge */
hi2c->Instance->CR2 |= I2C_CR2_NACK;
/* Flush TX register */
I2C_Flush_TXDR(hi2c);
return HAL_ERROR;
}
@ -1422,6 +1459,10 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
{
/* Disable Address Acknowledge */
hi2c->Instance->CR2 |= I2C_CR2_NACK;
/* Flush TX register */
I2C_Flush_TXDR(hi2c);
return HAL_ERROR;
}
@ -1445,13 +1486,29 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
}
/* Wait until AF flag is set */
if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart) != HAL_OK)
error = I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout, tickstart);
if (error != HAL_OK)
{
/* Check that I2C transfer finished */
/* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */
/* Mean XferCount == 0 */
tmpXferCount = hi2c->XferCount;
if ((hi2c->ErrorCode == HAL_I2C_ERROR_AF) && (tmpXferCount == 0U))
{
/* Reset ErrorCode to NONE */
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
}
else
{
/* Disable Address Acknowledge */
hi2c->Instance->CR2 |= I2C_CR2_NACK;
return HAL_ERROR;
}
}
else
{
/* Flush TX register */
I2C_Flush_TXDR(hi2c);
@ -1469,6 +1526,7 @@ HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData
/* Clear STOP flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
}
/* Wait until BUSY flag is reset */
if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, Timeout, tickstart) != HAL_OK)
@ -1672,7 +1730,26 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t D
/* Send Slave Address */
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE);
if (hi2c->XferSize > 0U)
{
/* Preload TX register */
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
/* Increment Buffer pointer */
hi2c->pBuffPtr++;
hi2c->XferCount--;
hi2c->XferSize--;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U), xfermode,
I2C_GENERATE_START_WRITE);
}
else
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode,
I2C_GENERATE_START_WRITE);
}
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
@ -1732,7 +1809,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t De
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
hi2c->XferSize = 1U;
xfermode = I2C_RELOAD_MODE;
}
else
@ -1895,6 +1972,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t
{
uint32_t xfermode;
HAL_StatusTypeDef dmaxferstatus;
uint32_t sizetoxfer = 0U;
if (hi2c->State == HAL_I2C_STATE_READY)
{
@ -1927,6 +2005,20 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t
xfermode = I2C_AUTOEND_MODE;
}
if (hi2c->XferSize > 0U)
{
/* Preload TX register */
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
/* Increment Buffer pointer */
hi2c->pBuffPtr++;
sizetoxfer = hi2c->XferSize;
hi2c->XferCount--;
hi2c->XferSize--;
}
if (hi2c->XferSize > 0U)
{
if (hi2c->hdmatx != NULL)
@ -1942,8 +2034,8 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t
hi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA channel */
dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR,
hi2c->XferSize);
dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr,
(uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
}
else
{
@ -1964,7 +2056,8 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t
{
/* Send Slave Address */
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, I2C_GENERATE_START_WRITE);
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)(hi2c->XferSize + 1U),
xfermode, I2C_GENERATE_START_WRITE);
/* Update XferCount value */
hi2c->XferCount -= hi2c->XferSize;
@ -2003,7 +2096,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t
/* Send Slave Address */
/* Set NBYTES to write and generate START condition */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE,
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, I2C_AUTOEND_MODE,
I2C_GENERATE_START_WRITE);
/* Process Unlocked */
@ -2065,7 +2158,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t D
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
hi2c->XferSize = 1U;
xfermode = I2C_RELOAD_MODE;
}
else
@ -2159,11 +2252,11 @@ HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t D
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* possible to enable all of these */
/* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI |
I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT);
I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT);
}
return HAL_OK;
@ -2612,7 +2705,7 @@ HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
hi2c->XferSize = 1U;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE,
I2C_GENERATE_START_READ);
}
@ -2650,7 +2743,7 @@ HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
hi2c->XferSize = MAX_NBYTE_SIZE;
hi2c->XferSize = 1U;
I2C_TransferConfig(hi2c, DevAddress, (uint8_t) hi2c->XferSize, I2C_RELOAD_MODE,
I2C_NO_STARTSTOP);
}
@ -2728,6 +2821,7 @@ HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddr
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
/* Prepare transfer parameters */
hi2c->XferSize = 0U;
hi2c->pBuffPtr = pData;
hi2c->XferCount = Size;
hi2c->XferOptions = I2C_NO_OPTION_FRAME;
@ -2849,11 +2943,11 @@ HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddre
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* possible to enable all of these */
/* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI |
I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
I2C_Enable_IRQ(hi2c, (I2C_XFER_TX_IT | I2C_XFER_RX_IT));
I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT);
return HAL_OK;
}
@ -3259,22 +3353,6 @@ HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAdd
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
}
/* Check if the maximum allowed number of trials has been reached */
if (I2C_Trials == Trials)
{
/* Generate Stop */
hi2c->Instance->CR2 |= I2C_CR2_STOP;
/* Wait until STOPF flag is reset */
if (I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout, tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear STOP Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
}
/* Increment Trials */
I2C_Trials++;
} while (I2C_Trials < Trials);
@ -3313,6 +3391,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16
{
uint32_t xfermode;
uint32_t xferrequest = I2C_GENERATE_START_WRITE;
uint32_t sizetoxfer = 0U;
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
@ -3344,6 +3423,21 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16
xfermode = hi2c->XferOptions;
}
if ((hi2c->XferSize > 0U) && ((XferOptions == I2C_FIRST_FRAME) || \
(XferOptions == I2C_FIRST_AND_LAST_FRAME)))
{
/* Preload TX register */
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
/* Increment Buffer pointer */
hi2c->pBuffPtr++;
sizetoxfer = hi2c->XferSize;
hi2c->XferCount--;
hi2c->XferSize--;
}
/* If transfer direction not change and there is no request to start another frame,
do not generate Restart Condition */
/* Mean Previous state is same as current state */
@ -3365,7 +3459,14 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16
}
/* Send Slave Address and set NBYTES to write */
if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME))
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest);
}
else
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest);
}
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
@ -3405,6 +3506,7 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint1
uint32_t xfermode;
uint32_t xferrequest = I2C_GENERATE_START_WRITE;
HAL_StatusTypeDef dmaxferstatus;
uint32_t sizetoxfer = 0U;
/* Check the parameters */
assert_param(IS_I2C_TRANSFER_OPTIONS_REQUEST(XferOptions));
@ -3436,6 +3538,21 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint1
xfermode = hi2c->XferOptions;
}
if ((hi2c->XferSize > 0U) && ((XferOptions == I2C_FIRST_FRAME) || \
(XferOptions == I2C_FIRST_AND_LAST_FRAME)))
{
/* Preload TX register */
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
/* Increment Buffer pointer */
hi2c->pBuffPtr++;
sizetoxfer = hi2c->XferSize;
hi2c->XferCount--;
hi2c->XferSize--;
}
/* If transfer direction not change and there is no request to start another frame,
do not generate Restart Condition */
/* Mean Previous state is same as current state */
@ -3471,8 +3588,8 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint1
hi2c->hdmatx->XferAbortCallback = NULL;
/* Enable the DMA channel */
dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->TXDR,
hi2c->XferSize);
dmaxferstatus = HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)hi2c->pBuffPtr,
(uint32_t)&hi2c->Instance->TXDR, hi2c->XferSize);
}
else
{
@ -3492,7 +3609,14 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint1
if (dmaxferstatus == HAL_OK)
{
/* Send Slave Address and set NBYTES to write */
if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME))
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest);
}
else
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest);
}
/* Update XferCount value */
hi2c->XferCount -= hi2c->XferSize;
@ -3531,8 +3655,14 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint1
/* Send Slave Address */
/* Set NBYTES to write and generate START condition */
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, I2C_AUTOEND_MODE,
I2C_GENERATE_START_WRITE);
if ((XferOptions == I2C_FIRST_FRAME) || (XferOptions == I2C_FIRST_AND_LAST_FRAME))
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)sizetoxfer, xfermode, xferrequest);
}
else
{
I2C_TransferConfig(hi2c, DevAddress, (uint8_t)hi2c->XferSize, xfermode, xferrequest);
}
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
@ -3795,11 +3925,11 @@ HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16
/* Note : The I2C interrupts must be enabled after unlocking current process
to avoid the risk of I2C interrupt handle execution before current
process unlock */
/* Enable ERR, TC, STOP, NACK, TXI interrupt */
/* Enable ERR, TC, STOP, NACK, RXI interrupt */
/* possible to enable all of these */
/* I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI |
I2C_IT_ADDRI | I2C_IT_RXI | I2C_IT_TXI */
I2C_Enable_IRQ(hi2c, I2C_XFER_TX_IT);
I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT);
}
return HAL_OK;
@ -4434,7 +4564,7 @@ HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c)
}
/**
* @brief Abort a master I2C IT or DMA process communication with Interrupt.
* @brief Abort a master or memory I2C IT or DMA process communication with Interrupt.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param DevAddress Target device address: The device 7 bits address value
@ -4443,7 +4573,9 @@ HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c)
*/
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress)
{
if (hi2c->Mode == HAL_I2C_MODE_MASTER)
HAL_I2C_ModeTypeDef tmp_mode = hi2c->Mode;
if ((tmp_mode == HAL_I2C_MODE_MASTER) || (tmp_mode == HAL_I2C_MODE_MEM))
{
/* Process Locked */
__HAL_LOCK(hi2c);
@ -4842,8 +4974,12 @@ static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uin
hi2c->XferSize--;
hi2c->XferCount--;
}
else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET))
else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) == RESET) && \
((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TXIS) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TXI) != RESET)))
{
/* Write data to TXDR */
if (hi2c->XferCount != 0U)
{
/* Write data to TXDR */
hi2c->Instance->TXDR = *hi2c->pBuffPtr;
@ -4854,6 +4990,7 @@ static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uin
hi2c->XferSize--;
hi2c->XferCount--;
}
}
else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TCR) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET))
{
@ -4862,8 +4999,16 @@ static HAL_StatusTypeDef I2C_Master_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uin
devaddress = (uint16_t)(hi2c->Instance->CR2 & I2C_CR2_SADD);
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
I2C_TransferConfig(hi2c, devaddress, (uint8_t)hi2c->XferSize, I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
}
else
@ -5017,8 +5162,16 @@ static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32
if ((hi2c->XferCount != 0U) && (hi2c->XferSize == 0U))
{
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize,
I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
}
@ -5039,14 +5192,28 @@ static HAL_StatusTypeDef I2C_Mem_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint32
else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_TC) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET))
{
/* Disable Interrupt related to address step */
I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT);
/* Enable ERR, TC, STOP, NACK and RXI interrupts */
I2C_Enable_IRQ(hi2c, I2C_XFER_RX_IT);
if (hi2c->State == HAL_I2C_STATE_BUSY_RX)
{
direction = I2C_GENERATE_START_READ;
}
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize,
@ -5103,8 +5270,7 @@ static HAL_StatusTypeDef I2C_Slave_ISR_IT(struct __I2C_HandleTypeDef *hi2c, uint
/* Call I2C Slave complete process */
I2C_ITSlaveCplt(hi2c, tmpITFlags);
}
if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \
else if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET))
{
/* Check that I2C transfer finished */
@ -5267,8 +5433,16 @@ static HAL_StatusTypeDef I2C_Master_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, ui
/* Prepare the new XferSize to transfer */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
xfermode = I2C_RELOAD_MODE;
}
else
@ -5405,6 +5579,9 @@ static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint3
else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TCR) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET))
{
/* Disable Interrupt related to address step */
I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT);
/* Enable only Error interrupt */
I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT);
@ -5412,8 +5589,16 @@ static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint3
{
/* Prepare the new XferSize to transfer */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize,
I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
}
@ -5447,14 +5632,28 @@ static HAL_StatusTypeDef I2C_Mem_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uint3
else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_TC) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_TCI) != RESET))
{
/* Disable Interrupt related to address step */
I2C_Disable_IRQ(hi2c, I2C_XFER_TX_IT);
/* Enable only Error and NACK interrupt for data transfer */
I2C_Enable_IRQ(hi2c, I2C_XFER_ERROR_IT);
if (hi2c->State == HAL_I2C_STATE_BUSY_RX)
{
direction = I2C_GENERATE_START_READ;
}
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
/* Set NBYTES to write and reload if hi2c->XferCount > MAX_NBYTE_SIZE and generate RESTART */
I2C_TransferConfig(hi2c, (uint16_t)hi2c->Devaddress, (uint8_t)hi2c->XferSize,
@ -5524,8 +5723,7 @@ static HAL_StatusTypeDef I2C_Slave_ISR_DMA(struct __I2C_HandleTypeDef *hi2c, uin
/* Call I2C Slave complete process */
I2C_ITSlaveCplt(hi2c, ITFlags);
}
if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \
else if ((I2C_CHECK_FLAG(ITFlags, I2C_FLAG_AF) != RESET) && \
(I2C_CHECK_IT_SOURCE(ITSources, I2C_IT_NACKI) != RESET))
{
/* Check that I2C transfer finished */
@ -6125,6 +6323,7 @@ static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags)
{
uint32_t tmpcr1value = READ_REG(hi2c->Instance->CR1);
uint32_t tmpITFlags = ITFlags;
uint32_t tmpoptions = hi2c->XferOptions;
HAL_I2C_StateTypeDef tmpstate = hi2c->State;
/* Clear STOP Flag */
@ -6141,6 +6340,11 @@ static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags)
I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_RX_IT);
hi2c->PreviousState = I2C_STATE_SLAVE_BUSY_RX;
}
else if (tmpstate == HAL_I2C_STATE_LISTEN)
{
I2C_Disable_IRQ(hi2c, I2C_XFER_LISTEN_IT | I2C_XFER_TX_IT | I2C_XFER_RX_IT);
hi2c->PreviousState = I2C_STATE_NONE;
}
else
{
/* Do nothing */
@ -6207,6 +6411,57 @@ static void I2C_ITSlaveCplt(I2C_HandleTypeDef *hi2c, uint32_t ITFlags)
hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
}
if ((I2C_CHECK_FLAG(tmpITFlags, I2C_FLAG_AF) != RESET) && \
(I2C_CHECK_IT_SOURCE(tmpcr1value, I2C_IT_NACKI) != RESET))
{
/* Check that I2C transfer finished */
/* if yes, normal use case, a NACK is sent by the MASTER when Transfer is finished */
/* Mean XferCount == 0*/
/* So clear Flag NACKF only */
if (hi2c->XferCount == 0U)
{
if ((hi2c->State == HAL_I2C_STATE_LISTEN) && (tmpoptions == I2C_FIRST_AND_LAST_FRAME))
/* Same action must be done for (tmpoptions == I2C_LAST_FRAME) which removed for
Warning[Pa134]: left and right operands are identical */
{
/* Call I2C Listen complete process */
I2C_ITListenCplt(hi2c, tmpITFlags);
}
else if ((hi2c->State == HAL_I2C_STATE_BUSY_TX_LISTEN) && (tmpoptions != I2C_NO_OPTION_FRAME))
{
/* Clear NACK Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Flush TX register */
I2C_Flush_TXDR(hi2c);
/* Last Byte is Transmitted */
/* Call I2C Slave Sequential complete process */
I2C_ITSlaveSeqCplt(hi2c);
}
else
{
/* Clear NACK Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
}
}
else
{
/* if no, error use case, a Non-Acknowledge of last Data is generated by the MASTER*/
/* Clear NACK Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
/* Set ErrorCode corresponding to a Non-Acknowledge */
hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
if ((tmpoptions == I2C_FIRST_FRAME) || (tmpoptions == I2C_NEXT_FRAME))
{
/* Call the corresponding callback to inform upper layer of End of Transfer */
I2C_ITError(hi2c, hi2c->ErrorCode);
}
}
}
hi2c->Mode = HAL_I2C_MODE_NONE;
hi2c->XferISR = NULL;
@ -6623,9 +6878,17 @@ static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma)
/* Set the XferSize to transfer */
if (hi2c->XferCount > MAX_NBYTE_SIZE)
{
/* Errata workaround 170323 */
if (I2C_GET_DIR(hi2c) == I2C_DIRECTION_RECEIVE)
{
hi2c->XferSize = 1U;
}
else
{
hi2c->XferSize = MAX_NBYTE_SIZE;
}
}
else
{
hi2c->XferSize = hi2c->XferCount;
@ -6735,6 +6998,12 @@ static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uin
{
while (__HAL_I2C_GET_FLAG(hi2c, Flag) == Status)
{
/* Check if an error is detected */
if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK)
{
return HAL_ERROR;
}
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
@ -6846,16 +7115,18 @@ static HAL_StatusTypeDef I2C_WaitOnSTOPFlagUntilTimeout(I2C_HandleTypeDef *hi2c,
static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Timeout,
uint32_t Tickstart)
{
while (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET)
HAL_StatusTypeDef status = HAL_OK;
while ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET) && (status == HAL_OK))
{
/* Check if an error is detected */
if (I2C_IsErrorOccurred(hi2c, Timeout, Tickstart) != HAL_OK)
{
return HAL_ERROR;
status = HAL_ERROR;
}
/* Check if a STOPF is detected */
if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET)
if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF) == SET) && (status == HAL_OK))
{
/* Check if an RXNE is pending */
/* Store Last receive data if any */
@ -6863,19 +7134,14 @@ static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c,
{
/* Return HAL_OK */
/* The Reading of data from RXDR will be done in caller function */
return HAL_OK;
status = HAL_OK;
}
else
{
/* Check a no-acknowledge have been detected */
if (__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET)
{
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
hi2c->ErrorCode = HAL_I2C_ERROR_AF;
}
else
{
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
}
/* Clear STOP Flag */
__HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_STOPF);
@ -6889,12 +7155,16 @@ static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c,
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
status = HAL_ERROR;
}
else
{
hi2c->ErrorCode = HAL_I2C_ERROR_NONE;
}
}
/* Check for the Timeout */
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
if ((((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) && (status == HAL_OK))
{
if ((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE) == RESET))
{
@ -6904,11 +7174,11 @@ static HAL_StatusTypeDef I2C_WaitOnRXNEFlagUntilTimeout(I2C_HandleTypeDef *hi2c,
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_ERROR;
status = HAL_ERROR;
}
}
}
return HAL_OK;
return status;
}
/**
@ -7103,13 +7373,13 @@ static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest)
if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT)
{
/* Enable ERR, TC, STOP, NACK and RXI interrupts */
/* Enable ERR, TC, STOP, NACK and TXI interrupts */
tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI;
}
if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT)
{
/* Enable ERR, TC, STOP, NACK and TXI interrupts */
/* Enable ERR, TC, STOP, NACK and RXI interrupts */
tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI;
}
@ -7136,13 +7406,13 @@ static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest)
if ((InterruptRequest & I2C_XFER_TX_IT) == I2C_XFER_TX_IT)
{
/* Enable ERR, TC, STOP, NACK and RXI interrupts */
/* Enable ERR, TC, STOP, NACK and TXI interrupts */
tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_TXI;
}
if ((InterruptRequest & I2C_XFER_RX_IT) == I2C_XFER_RX_IT)
{
/* Enable ERR, TC, STOP, NACK and TXI interrupts */
/* Enable ERR, TC, STOP, NACK and RXI interrupts */
tmpisr |= I2C_IT_ERRI | I2C_IT_TCI | I2C_IT_STOPI | I2C_IT_NACKI | I2C_IT_RXI;
}
@ -7158,7 +7428,7 @@ static void I2C_Enable_IRQ(I2C_HandleTypeDef *hi2c, uint16_t InterruptRequest)
tmpisr |= (I2C_IT_STOPI | I2C_IT_TCI);
}
if ((hi2c->XferISR != I2C_Mem_ISR_DMA) && (InterruptRequest == I2C_XFER_RELOAD_IT))
if (InterruptRequest == I2C_XFER_RELOAD_IT)
{
/* Enable TC interrupts */
tmpisr |= I2C_IT_TCI;

View File

@ -874,15 +874,14 @@ HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uin
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -993,15 +992,14 @@ HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -1091,15 +1089,14 @@ HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData,
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -1118,6 +1115,8 @@ HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData,
hi2s->TxXferCount = Size;
}
__HAL_UNLOCK(hi2s);
/* Enable TXE and ERR interrupt */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR));
@ -1128,7 +1127,6 @@ HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData,
__HAL_I2S_ENABLE(hi2s);
}
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
@ -1157,15 +1155,14 @@ HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, u
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -1184,6 +1181,8 @@ HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, u
hi2s->RxXferCount = Size;
}
__HAL_UNLOCK(hi2s);
/* Enable RXNE and ERR interrupt */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR));
@ -1194,7 +1193,6 @@ HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, u
__HAL_I2S_ENABLE(hi2s);
}
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
@ -1221,15 +1219,14 @@ HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -1271,12 +1268,7 @@ HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
return HAL_ERROR;
}
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S Tx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CR2, SPI_CR2_TXDMAEN))
@ -1285,7 +1277,13 @@ HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
return HAL_OK;
}
@ -1312,15 +1310,14 @@ HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
__HAL_UNLOCK(hi2s);
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
@ -1368,12 +1365,7 @@ HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
return HAL_ERROR;
}
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S Rx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CR2, SPI_CR2_RXDMAEN))
@ -1382,7 +1374,13 @@ HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData,
SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
return HAL_OK;
}

View File

@ -210,12 +210,10 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
uint32_t Timeout)
{
uint32_t tmp1 = 0U;
HAL_StatusTypeDef errorcode = HAL_OK;
if (hi2s->State != HAL_I2S_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
@ -281,8 +279,11 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
errorcode = HAL_ERROR;
goto error;
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Write Data on DR register */
hi2s->Instance->DR = (*pTxData++);
@ -305,8 +306,11 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
errorcode = HAL_ERROR;
goto error;
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Read Data from DR register */
(*pRxData++) = I2SxEXT(hi2s->Instance)->DR;
@ -354,8 +358,11 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
errorcode = HAL_ERROR;
goto error;
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Write Data on DR register */
I2SxEXT(hi2s->Instance)->DR = (*pTxData++);
@ -378,8 +385,11 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
errorcode = HAL_ERROR;
goto error;
hi2s->State = HAL_I2S_STATE_READY;
/* Process UnLock */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Read Data from DR register */
(*pRxData++) = hi2s->Instance->DR;
@ -398,15 +408,17 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s,
}
}
if (hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
{
errorcode = HAL_ERROR;
}
error :
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return errorcode;
if (hi2s->ErrorCode != HAL_I2S_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
@ -430,12 +442,10 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s,
uint16_t Size)
{
uint32_t tmp1 = 0U;
HAL_StatusTypeDef errorcode = HAL_OK;
if (hi2s->State != HAL_I2S_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
@ -510,15 +520,14 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s,
}
}
__HAL_UNLOCK(hi2s);
/* Enable I2Sext peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
error :
__HAL_UNLOCK(hi2s);
return errorcode;
return HAL_OK;
}
/**
@ -543,12 +552,10 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s,
{
uint32_t *tmp = NULL;
uint32_t tmp1 = 0U;
HAL_StatusTypeDef errorcode = HAL_OK;
if (hi2s->State != HAL_I2S_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
@ -620,16 +627,6 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s,
/* Enable Tx DMA Request */
SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);
/* Check if the I2S is already enabled */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
{
/* Enable I2Sext(receiver) before enabling I2Sx peripheral */
__HAL_I2SEXT_ENABLE(hi2s);
/* Enable I2S peripheral after the I2Sext */
__HAL_I2S_ENABLE(hi2s);
}
}
else
{
@ -653,7 +650,9 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s,
/* Enable Rx DMA Request */
SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN);
}
__HAL_UNLOCK(hi2s);
/* Check if the I2S is already enabled */
if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
{
@ -662,11 +661,8 @@ HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s,
/* Enable I2S peripheral before the I2Sext */
__HAL_I2S_ENABLE(hi2s);
}
}
error :
__HAL_UNLOCK(hi2s);
return errorcode;
return HAL_OK;
}
/**

View File

@ -142,7 +142,7 @@
[..]
Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
weak function.
HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
@ -159,10 +159,10 @@
[..]
By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
all callbacks are set to the corresponding weak (surcharged) functions:
all callbacks are set to the corresponding weak functions:
examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback().
Exception done for MspInit and MspDeInit functions that are respectively
reset to the legacy weak (surcharged) functions in the HAL_IRDA_Init()
reset to the legacy weak functions in the HAL_IRDA_Init()
and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
@ -179,7 +179,7 @@
[..]
When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available
and weak (surcharged) callbacks are used.
and weak callbacks are used.
@endverbatim
******************************************************************************
@ -470,7 +470,7 @@ __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User IRDA Callback
* To be used instead of the weak predefined callback
* To be used to override the weak predefined callback
* @note The HAL_IRDA_RegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET
* to register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID
* @param hirda irda handle

View File

@ -77,15 +77,15 @@
and a pointer to the user callback function.
Use function HAL_NAND_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
weak (overridden) function. It allows to reset following callbacks:
(+) MspInitCallback : NAND MspInit.
(+) MspDeInitCallback : NAND MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
all callbacks are reset to the corresponding legacy weak (overridden) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_NAND_Init
reset to the legacy weak (overridden) functions in the HAL_NAND_Init
and HAL_NAND_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_NAND_Init and HAL_NAND_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
@ -100,7 +100,7 @@
When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
and weak (overridden) callbacks are used.
@endverbatim
******************************************************************************
@ -1976,7 +1976,7 @@ uint32_t HAL_NAND_Address_Inc(const NAND_HandleTypeDef *hnand, NAND_AddressTypeD
#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User NAND Callback
* To be used instead of the weak (surcharged) predefined callback
* To be used to override the weak predefined callback
* @param hnand : NAND handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
@ -1996,9 +1996,6 @@ HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hnand);
if (hnand->State == HAL_NAND_STATE_READY)
{
switch (CallbackId)
@ -2040,14 +2037,12 @@ HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hnand);
return status;
}
/**
* @brief Unregister a User NAND Callback
* NAND Callback is redirected to the weak (surcharged) predefined callback
* NAND Callback is redirected to the weak predefined callback
* @param hnand : NAND handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
@ -2060,9 +2055,6 @@ HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAN
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hnand);
if (hnand->State == HAL_NAND_STATE_READY)
{
switch (CallbackId)
@ -2104,8 +2096,6 @@ HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAN
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hnand);
return status;
}
#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */

View File

@ -74,15 +74,15 @@
and a pointer to the user callback function.
Use function HAL_NOR_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
weak (overridden) function. It allows to reset following callbacks:
(+) MspInitCallback : NOR MspInit.
(+) MspDeInitCallback : NOR MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_NOR_Init and if the state is HAL_NOR_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
all callbacks are reset to the corresponding legacy weak (overridden) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_NOR_Init
reset to the legacy weak (overridden) functions in the HAL_NOR_Init
and HAL_NOR_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_NOR_Init and HAL_NOR_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
@ -97,7 +97,7 @@
When The compilation define USE_HAL_NOR_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
and weak (overridden) callbacks are used.
@endverbatim
******************************************************************************
@ -406,7 +406,7 @@ __weak void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor)
* @param Timeout Maximum timeout value
* @retval None
*/
__weak void HAL_NOR_MspWait(const NOR_HandleTypeDef *hnor, uint32_t Timeout)
__weak void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hnor);
@ -1309,7 +1309,7 @@ HAL_StatusTypeDef HAL_NOR_Read_CFI(NOR_HandleTypeDef *hnor, NOR_CFITypeDef *pNOR
#if (USE_HAL_NOR_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User NOR Callback
* To be used instead of the weak (surcharged) predefined callback
* To be used to override the weak predefined callback
* @param hnor : NOR handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
@ -1329,9 +1329,6 @@ HAL_StatusTypeDef HAL_NOR_RegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_Call
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hnor);
state = hnor->State;
if ((state == HAL_NOR_STATE_READY) || (state == HAL_NOR_STATE_RESET) || (state == HAL_NOR_STATE_PROTECTED))
{
@ -1355,14 +1352,12 @@ HAL_StatusTypeDef HAL_NOR_RegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_Call
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hnor);
return status;
}
/**
* @brief Unregister a User NOR Callback
* NOR Callback is redirected to the weak (surcharged) predefined callback
* NOR Callback is redirected to the weak predefined callback
* @param hnor : NOR handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
@ -1375,9 +1370,6 @@ HAL_StatusTypeDef HAL_NOR_UnRegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_Ca
HAL_StatusTypeDef status = HAL_OK;
HAL_NOR_StateTypeDef state;
/* Process locked */
__HAL_LOCK(hnor);
state = hnor->State;
if ((state == HAL_NOR_STATE_READY) || (state == HAL_NOR_STATE_RESET) || (state == HAL_NOR_STATE_PROTECTED))
{
@ -1401,8 +1393,6 @@ HAL_StatusTypeDef HAL_NOR_UnRegisterCallback(NOR_HandleTypeDef *hnor, HAL_NOR_Ca
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hnor);
return status;
}
#endif /* (USE_HAL_NOR_REGISTER_CALLBACKS) */
@ -1533,7 +1523,7 @@ HAL_NOR_StateTypeDef HAL_NOR_GetState(const NOR_HandleTypeDef *hnor)
* @retval NOR_Status The returned value can be: HAL_NOR_STATUS_SUCCESS, HAL_NOR_STATUS_ERROR
* or HAL_NOR_STATUS_TIMEOUT
*/
HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(const NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout)
HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout)
{
HAL_NOR_StatusTypeDef status = HAL_NOR_STATUS_ONGOING;
uint16_t tmpsr1;

View File

@ -1311,7 +1311,7 @@ HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, u
* @param ep_addr endpoint address
* @retval Data Size
*/
uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
uint32_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef const *hpcd, uint8_t ep_addr)
{
return hpcd->OUT_ep[ep_addr & EP_ADDR_MSK].xfer_count;
}
@ -1451,9 +1451,18 @@ HAL_StatusTypeDef HAL_PCD_EP_Abort(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
*/
HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpcd);
UNUSED(ep_addr);
__HAL_LOCK(hpcd);
if ((ep_addr & 0x80U) == 0x80U)
{
(void)USB_FlushTxFifo(hpcd->Instance, (uint32_t)ep_addr & EP_ADDR_MSK);
}
else
{
(void)USB_FlushRxFifo(hpcd->Instance);
}
__HAL_UNLOCK(hpcd);
return HAL_OK;
}
@ -1502,7 +1511,7 @@ HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd)
* @param hpcd PCD handle
* @retval HAL state
*/
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd)
PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef const *hpcd)
{
return hpcd->State;
}

View File

@ -283,6 +283,9 @@ void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
/* Check the parameters */
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Prevent unused argument(s) compilation warning */
UNUSED(Regulator);
/* Clear SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);

View File

@ -892,6 +892,9 @@ void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_M
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
/* Prevent unused argument(s) compilation warning */
UNUSED(RCC_MCOx);
/* Configure the MCO1 pin in alternate function mode */
gpio.Mode = GPIO_MODE_AF_PP;
gpio.Speed = GPIO_SPEED_FREQ_HIGH;
@ -977,8 +980,8 @@ uint32_t HAL_RCC_GetSysClockFreq(void)
}
case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
{
pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> POSITION_VAL(RCC_CFGR_PLLMUL)];
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> POSITION_VAL(RCC_CFGR2_PREDIV)];
pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_Pos];
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV) >> RCC_CFGR2_PREDIV_Pos];
#if defined(RCC_CFGR_PLLSRC_HSI_DIV2)
if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI)
{
@ -1097,7 +1100,7 @@ void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
/* Get the LSE configuration -----------------------------------------------*/
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)

View File

@ -1247,12 +1247,12 @@ uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
/* Frequency is the PLL frequency divided by ADC prescaler (1U/2U/4U/6U/8U/10U/12U/16U/32U/64U/128U/256U) */
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> POSITION_VAL(RCC_CFGR2_ADC1PRES)) & 0xFU];
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> RCC_CFGR2_ADC1PRES_Pos) & 0xFU];
}
}
#else /* RCC_CFGR_ADCPRE */
/* ADC1 is set to PLCK2 frequency divided by 2U/4U/6U/8U */
frequency = HAL_RCC_GetPCLK2Freq() / (((srcclk >> POSITION_VAL(RCC_CFGR_ADCPRE)) + 1U) * 2U);
frequency = HAL_RCC_GetPCLK2Freq() / (((srcclk >> RCC_CFGR_ADCPRE_Pos) + 1U) * 2U);
#endif /* RCC_CFGR2_ADC1PRES */
break;
}
@ -1274,7 +1274,7 @@ uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
/* Frequency is the PLL frequency divided by ADC prescaler (1U/2U/4U/6/8U/10U/12U/16U/32U/64U/128U/256U) */
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> POSITION_VAL(RCC_CFGR2_ADCPRE12)) & 0xF];
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> RCC_CFGR2_ADCPRE12_Pos) & 0xF];
}
}
break;
@ -1297,7 +1297,7 @@ uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
if (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY))
{
/* Frequency is the PLL frequency divided by ADC prescaler (1U/2U/4U/6U/8U/10U/12U/16U/32U/64U/128U/256U) */
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> POSITION_VAL(RCC_CFGR2_ADCPRE34)) & 0xF];
frequency = RCC_GetPLLCLKFreq() / adc_pll_prediv_table[(srcclk >> RCC_CFGR2_ADCPRE34_Pos) & 0xF];
}
}
break;
@ -1480,7 +1480,7 @@ uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
/* Get the current SDADC source */
srcclk = __HAL_RCC_GET_SDADC_SOURCE();
/* Frequency is the system frequency divided by SDADC prescaler (2U/4U/6U/8U/10U/12U/14U/16U/20U/24U/28U/32U/36U/40U/44U/48U) */
frequency = SystemCoreClock / sdadc_prescaler_table[(srcclk >> POSITION_VAL(RCC_CFGR_SDPRE)) & 0xF];
frequency = SystemCoreClock / sdadc_prescaler_table[(srcclk >> RCC_CFGR_SDPRE_Pos) & 0xF];
break;
}
#endif /* RCC_CFGR_SDPRE */

View File

@ -6,8 +6,8 @@
* This file provides firmware functions to manage the following
* functionalities of the Real-Time Clock (RTC) peripheral:
* + Initialization and de-initialization functions
* + RTC Calendar (Time and Date) configuration functions
* + RTC Alarms (Alarm A and Alarm B) configuration functions
* + Calendar (Time and Date) configuration functions
* + Alarms (Alarm A and Alarm B) configuration functions
* + Peripheral Control functions
* + Peripheral State functions
*
@ -63,7 +63,7 @@
##### Backup Domain Access #####
==================================================================
[..] After reset, the backup domain (RTC registers, RTC backup data registers
[..] After reset, the backup domain (RTC registers and RTC backup data registers)
is protected against possible unwanted write accesses.
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Enable the Power Controller (PWR) APB1 interface clock using the
@ -121,6 +121,12 @@
*** Callback registration ***
=============================================
[..]
When the compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all
callbacks are set to the corresponding weak functions.
This is the recommended configuration in order to optimize memory/code
consumption footprint/performances.
[..]
The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
@ -132,9 +138,11 @@
(+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
(+) Tamper2EventCallback : RTC Tamper 2 Event callback.
(+) Tamper3EventCallback : RTC Tamper 3 Event callback.
(+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*)
(+) MspInitCallback : RTC MspInit callback.
(+) MspDeInitCallback : RTC MspDeInit callback.
(*) value not applicable to all devices.
[..]
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
@ -150,31 +158,29 @@
(+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
(+) Tamper2EventCallback : RTC Tamper 2 Event callback.
(+) Tamper3EventCallback : RTC Tamper 3 Event callback.
(+) Tamper3EventCallback : RTC Tamper 3 Event callback. (*)
(+) MspInitCallback : RTC MspInit callback.
(+) MspDeInitCallback : RTC MspDeInit callback.
(*) value not applicable to all devices.
[..]
By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
all callbacks are set to the corresponding weak functions:
examples AlarmAEventCallback(), WakeUpTimerEventCallback().
examples AlarmAEventCallback(), TimeStampEventCallback().
Exception done for MspInit() and MspDeInit() callbacks that are reset to the
legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only
when these callbacks are null (not registered beforehand).
legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these
callbacks are null (not registered beforehand).
If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand).
[..]
Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
Exception done MspInit()/MspDeInit() that can be registered/unregistered
Exception done for MspInit() and MspDeInit() that can be registered/unregistered
in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state.
Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the
Init/DeInit.
In that case first register the MspInit()/MspDeInit() user callbacks
using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
or HAL_RTC_Init() functions.
[..]
When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all
callbacks are set to the corresponding weak functions.
In that case first register the MspInit()/MspDeInit() user callbacks using
HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit() or HAL_RTC_Init()
functions.
@endverbatim
******************************************************************************
@ -437,12 +443,13 @@ HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
* @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
* @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
* @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
* @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*)
* @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID
*
* (*) value not applicable to all devices.
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
@ -547,12 +554,13 @@ HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_Call
* @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
* @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
* @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
* @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Event Callback ID
* @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Event Callback ID
* @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Event Callback ID (*)
* @arg @ref HAL_RTC_MSPINIT_CB_ID MSP Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID MSP DeInit callback ID
*
* (*) value not applicable to all devices.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
@ -1059,7 +1067,7 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
@ -1092,7 +1100,7 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
((uint32_t) sAlarm->AlarmTime.Seconds) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
((uint32_t) sAlarm->AlarmMask));
@ -1105,16 +1113,15 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Alarm register */
if (sAlarm->Alarm == RTC_ALARM_A)
{
/* Disable the Alarm A */
/* Disable Alarm A */
__HAL_RTC_ALARMA_DISABLE(hrtc);
/* In case interrupt mode is used, the interrupt source must be disabled */
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
/* Clear the Alarm flag */
/* Clear Alarm A flag */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
/* Get tick */
@ -1137,21 +1144,22 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
}
}
/* Configure Alarm A register */
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
/* Configure the Alarm A Subseconds register */
/* Configure Alarm A Subseconds register */
hrtc->Instance->ALRMASSR = subsecondtmpreg;
/* Configure the Alarm state: Enable Alarm */
/* Enable Alarm A */
__HAL_RTC_ALARMA_ENABLE(hrtc);
}
else
{
/* Disable the Alarm B */
/* Disable Alarm B */
__HAL_RTC_ALARMB_DISABLE(hrtc);
/* In case interrupt mode is used, the interrupt source must be disabled */
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
/* Clear the Alarm flag */
/* Clear Alarm B flag */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
/* Get tick */
@ -1174,10 +1182,11 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
}
}
/* Configure Alarm B register */
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
/* Configure the Alarm B Subseconds register */
/* Configure Alarm B Subseconds register */
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
/* Configure the Alarm state: Enable Alarm */
/* Enable Alarm B */
__HAL_RTC_ALARMB_ENABLE(hrtc);
}
@ -1256,7 +1265,7 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
((uint32_t)sAlarm->AlarmMask));
@ -1289,7 +1298,7 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
((uint32_t) sAlarm->AlarmTime.Seconds) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
((uint32_t) sAlarm->AlarmMask));
@ -1302,13 +1311,12 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* Configure the Alarm register */
if (sAlarm->Alarm == RTC_ALARM_A)
{
/* Disable the Alarm A */
/* Disable Alarm A */
__HAL_RTC_ALARMA_DISABLE(hrtc);
/* Clear the Alarm flag */
/* Clear Alarm A flag */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
/* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
@ -1329,20 +1337,21 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef
}
} while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U);
/* Configure Alarm A register */
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
/* Configure the Alarm A Subseconds register */
/* Configure Alarm A Subseconds register */
hrtc->Instance->ALRMASSR = subsecondtmpreg;
/* Configure the Alarm state: Enable Alarm */
/* Enable Alarm A */
__HAL_RTC_ALARMA_ENABLE(hrtc);
/* Configure the Alarm interrupt */
/* Enable Alarm A interrupt */
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
}
else
{
/* Disable the Alarm B */
/* Disable Alarm B */
__HAL_RTC_ALARMB_DISABLE(hrtc);
/* Clear the Alarm flag */
/* Clear Alarm B flag */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
/* Reload the counter */
@ -1366,16 +1375,17 @@ HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef
}
} while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U);
/* Configure Alarm B register */
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
/* Configure the Alarm B Subseconds register */
/* Configure Alarm B Subseconds register */
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
/* Configure the Alarm state: Enable Alarm */
/* Enable Alarm B */
__HAL_RTC_ALARMB_ENABLE(hrtc);
/* Configure the Alarm interrupt */
/* Enable Alarm B interrupt */
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
}
/* RTC Alarm Interrupt Configuration: EXTI configuration */
/* Enable and configure the EXTI line associated to the RTC Alarm interrupt */
__HAL_RTC_ALARM_EXTI_ENABLE_IT();
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
@ -1427,7 +1437,7 @@ HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alar
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
/* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
{
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
@ -1455,7 +1465,7 @@ HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alar
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
/* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
{
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
@ -1552,7 +1562,7 @@ HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sA
*/
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
{
/* Clear the EXTI's line Flag for RTC Alarm */
/* Clear the EXTI flag associated to the RTC Alarm interrupt */
__HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
/* Get the Alarm A interrupt source enable status */

View File

@ -54,7 +54,7 @@
*** Tamper configuration ***
============================
[..]
(+) To Enable the RTC Tamper and configure the Tamper filter count, trigger
(+) To enable the RTC Tamper and configure the Tamper filter count, trigger
Edge or Level according to the Tamper filter value (if equal to 0 Edge
else Level), sampling frequency, precharge or discharge and Pull-UP use
the HAL_RTCEx_SetTamper() function.
@ -84,9 +84,9 @@
This cycle is maintained by a 20-bit counter clocked by RTCCLK.
(+) The smooth calibration register (RTC_CALR) specifies the number of RTCCLK
clock cycles to be masked during the 32-second cycle.
(+) The RTC Smooth Digital Calibration value and the corresponding calibration
cycle period (32s, 16s, or 8s) can be calibrated using the
HAL_RTCEx_SetSmoothCalib() function.
(+) To configure the RTC Smooth Digital Calibration value and the corresponding
calibration cycle period (32s,16s and 8s) use the HAL_RTCEx_SetSmoothCalib()
function.
@endverbatim
******************************************************************************
@ -265,7 +265,7 @@ HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t RT
/* Enable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
/* RTC Timestamp Interrupt Configuration: EXTI configuration */
/* Enable and configure the EXTI line associated to the RTC Timestamp and Tamper interrupts */
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT();
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE();
@ -296,7 +296,7 @@ HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc)
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
/* In case interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS);
/* Get the RTC_CR register and clear the bits to be configured */
@ -513,7 +513,7 @@ HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperType
/* Copy desired configuration into configuration register */
hrtc->Instance->TAFCR = tmpreg;
/* RTC Tamper Interrupt Configuration: EXTI configuration */
/* Enable and configure the EXTI line associated to the RTC Timestamp and Tamper interrupts */
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT();
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_RISING_EDGE();
@ -534,8 +534,9 @@ HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperType
* This parameter can be any combination of the following values:
* @arg RTC_TAMPER_1: Tamper 1
* @arg RTC_TAMPER_2: Tamper 2
* @arg RTC_TAMPER_3: Tamper 3
* @note RTC_TAMPER_3 is not applicable to all devices.
* @arg RTC_TAMPER_3: Tamper 3 (*)
*
* (*) value not applicable to all devices.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper)
@ -566,7 +567,7 @@ HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t T
*/
void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc)
{
/* Clear the EXTI's Flag for RTC Timestamp and Tamper */
/* Clear the EXTI flag associated to the RTC Timestamp and Tamper interrupts */
__HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG();
/* Get the Timestamp interrupt source enable status */
@ -1060,7 +1061,7 @@ HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t
/* Configure the Wakeup Timer counter */
hrtc->Instance->WUTR = (uint32_t)WakeUpCounter;
/* RTC wakeup timer Interrupt Configuration: EXTI configuration */
/* Enable and configure the EXTI line associated to the RTC Wakeup Timer interrupt */
__HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT();
__HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_RISING_EDGE();
@ -1102,7 +1103,7 @@ HAL_StatusTypeDef HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc)
/* Disable the Wakeup Timer */
__HAL_RTC_WAKEUPTIMER_DISABLE(hrtc);
/* In case of interrupt mode is used, the interrupt source must disabled */
/* In case interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc, RTC_IT_WUT);
/* Get tick */
@ -1161,7 +1162,7 @@ uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc)
*/
void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc)
{
/* Clear the EXTI's line Flag for RTC WakeUpTimer */
/* Clear the EXTI flag associated to the RTC Wakeup Timer interrupt */
__HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG();
/* Get the pending status of the Wakeup timer Interrupt */

View File

@ -318,6 +318,8 @@ static void SDADC_DMAError(DMA_HandleTypeDef *hdma);
*/
HAL_StatusTypeDef HAL_SDADC_Init(SDADC_HandleTypeDef* hsdadc)
{
uint32_t tickstart;
/* Check SDADC handle */
if(hsdadc == NULL)
{
@ -393,8 +395,13 @@ HAL_StatusTypeDef HAL_SDADC_Init(SDADC_HandleTypeDef* hsdadc)
hsdadc->Instance->CR2 |= SDADC_CR2_ADON;
/* Wait end of stabilization */
tickstart = HAL_GetTick();
while((hsdadc->Instance->ISR & SDADC_ISR_STABIP) != 0UL)
{
if((HAL_GetTick()-tickstart) > SDADC_TIMEOUT)
{
return HAL_TIMEOUT;
}
}
/* Set SDADC to ready state */

View File

@ -134,7 +134,7 @@
[..]
Use function HAL_SMARTCARD_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
weak function.
HAL_SMARTCARD_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
@ -149,10 +149,10 @@
[..]
By default, after the HAL_SMARTCARD_Init() and when the state is HAL_SMARTCARD_STATE_RESET
all callbacks are set to the corresponding weak (surcharged) functions:
all callbacks are set to the corresponding weak functions:
examples HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback().
Exception done for MspInit and MspDeInit functions that are respectively
reset to the legacy weak (surcharged) functions in the HAL_SMARTCARD_Init()
reset to the legacy weak functions in the HAL_SMARTCARD_Init()
and HAL_SMARTCARD_DeInit() only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_SMARTCARD_Init() and HAL_SMARTCARD_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
@ -169,7 +169,7 @@
[..]
When The compilation define USE_HAL_SMARTCARD_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available
and weak (surcharged) callbacks are used.
and weak callbacks are used.
@endverbatim
@ -460,7 +460,7 @@ __weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsmartcard)
#if (USE_HAL_SMARTCARD_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User SMARTCARD Callback
* To be used instead of the weak predefined callback
* To be used to override the weak predefined callback
* @note The HAL_SMARTCARD_RegisterCallback() may be called before HAL_SMARTCARD_Init()
* in HAL_SMARTCARD_STATE_RESET to register callbacks for HAL_SMARTCARD_MSPINIT_CB_ID
* and HAL_SMARTCARD_MSPDEINIT_CB_ID
@ -2282,7 +2282,7 @@ static HAL_StatusTypeDef SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsmartcard
assert_param(IS_SMARTCARD_TIMEOUT_VALUE(hsmartcard->Init.TimeOutValue));
tmpreg |= (uint32_t) hsmartcard->Init.TimeOutValue;
}
MODIFY_REG(hsmartcard->Instance->RTOR, (USART_RTOR_RTO | USART_RTOR_BLEN), tmpreg);
WRITE_REG(hsmartcard->Instance->RTOR, tmpreg);
/*-------------------------- USART BRR Configuration -----------------------*/
SMARTCARD_GETCLOCKSOURCE(hsmartcard, clocksource);

View File

@ -926,6 +926,7 @@ HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint
uint8_t *pData, uint16_t Size, uint32_t XferOptions)
{
uint32_t tmp;
uint32_t sizetoxfer;
/* Check the parameters */
assert_param(IS_SMBUS_TRANSFER_OPTIONS_REQUEST(XferOptions));
@ -958,11 +959,35 @@ HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint
hsmbus->XferSize = Size;
}
sizetoxfer = hsmbus->XferSize;
if ((sizetoxfer > 0U) && ((XferOptions == SMBUS_FIRST_FRAME) ||
(XferOptions == SMBUS_FIRST_AND_LAST_FRAME_NO_PEC) ||
(XferOptions == SMBUS_FIRST_FRAME_WITH_PEC) ||
(XferOptions == SMBUS_FIRST_AND_LAST_FRAME_WITH_PEC)))
{
if (hsmbus->pBuffPtr != NULL)
{
/* Preload TX register */
/* Write data to TXDR */
hsmbus->Instance->TXDR = *hsmbus->pBuffPtr;
/* Increment Buffer pointer */
hsmbus->pBuffPtr++;
hsmbus->XferCount--;
hsmbus->XferSize--;
}
else
{
return HAL_ERROR;
}
}
/* Send Slave Address */
/* Set NBYTES to write and reload if size > MAX_NBYTE_SIZE and generate RESTART */
if ((hsmbus->XferSize < hsmbus->XferCount) && (hsmbus->XferSize == MAX_NBYTE_SIZE))
if ((sizetoxfer < hsmbus->XferCount) && (sizetoxfer == MAX_NBYTE_SIZE))
{
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize,
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)sizetoxfer,
SMBUS_RELOAD_MODE | (hsmbus->XferOptions & SMBUS_SENDPEC_MODE),
SMBUS_GENERATE_START_WRITE);
}
@ -977,7 +1002,7 @@ HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint
if ((hsmbus->PreviousState == HAL_SMBUS_STATE_MASTER_BUSY_TX) && \
(IS_SMBUS_TRANSFER_OTHER_OPTIONS_REQUEST(tmp) == 0))
{
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize, hsmbus->XferOptions,
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)sizetoxfer, hsmbus->XferOptions,
SMBUS_NO_STARTSTOP);
}
/* Else transfer direction change, so generate Restart with new transfer direction */
@ -987,7 +1012,7 @@ HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint
SMBUS_ConvertOtherXferOptions(hsmbus);
/* Handle Transfer */
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)hsmbus->XferSize,
SMBUS_TransferConfig(hsmbus, DevAddress, (uint8_t)sizetoxfer,
hsmbus->XferOptions,
SMBUS_GENERATE_START_WRITE);
}
@ -995,10 +1020,17 @@ HAL_StatusTypeDef HAL_SMBUS_Master_Transmit_IT(SMBUS_HandleTypeDef *hsmbus, uint
/* If PEC mode is enable, size to transmit manage by SW part should be Size-1 byte, corresponding to PEC byte */
/* PEC byte is automatically sent by HW block, no need to manage it in Transmit process */
if (SMBUS_GET_PEC_MODE(hsmbus) != 0UL)
{
if (hsmbus->XferSize > 0U)
{
hsmbus->XferSize--;
hsmbus->XferCount--;
}
else
{
return HAL_ERROR;
}
}
}
/* Process Unlocked */
@ -2587,8 +2619,11 @@ static void SMBUS_ITErrorHandler(SMBUS_HandleTypeDef *hsmbus)
__HAL_SMBUS_CLEAR_FLAG(hsmbus, SMBUS_FLAG_PECERR);
}
if (hsmbus->ErrorCode != HAL_SMBUS_ERROR_NONE)
{
/* Flush TX register */
SMBUS_Flush_TXDR(hsmbus);
}
/* Store current volatile hsmbus->ErrorCode, misra rule */
tmperror = hsmbus->ErrorCode;

View File

@ -1359,6 +1359,20 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxD
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
}
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
{
@ -1418,6 +1432,19 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxD
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr);
hspi->pTxBuffPtr++;
hspi->TxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
if ((READ_BIT(spi_cr1, SPI_CR1_MSTR) == 0U) && (READ_BIT(spi_cr2, SPI_CR2_NSSP) == SPI_CR2_NSSP))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
}
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
}
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
@ -1579,8 +1606,6 @@ HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, u
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
/* Process Locked */
__HAL_LOCK(hspi);
if ((pData == NULL) || (Size == 0U))
{
@ -1594,6 +1619,9 @@ HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, u
goto error;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
@ -1633,10 +1661,6 @@ HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, u
}
#endif /* USE_SPI_CRC */
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
@ -1644,8 +1668,12 @@ HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, u
__HAL_SPI_ENABLE(hspi);
}
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
error :
return errorcode;
}
@ -1675,8 +1703,6 @@ HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, ui
return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
}
/* Process Locked */
__HAL_LOCK(hspi);
if ((pData == NULL) || (Size == 0U))
{
@ -1684,6 +1710,9 @@ HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, ui
goto error;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
@ -1736,9 +1765,6 @@ HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, ui
}
#endif /* USE_SPI_CRC */
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
/* Note : The SPI must be enabled after unlocking current process
to avoid the risk of SPI interrupt handle execution before current
process unlock */
@ -1750,9 +1776,12 @@ HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, ui
__HAL_SPI_ENABLE(hspi);
}
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
error :
return errorcode;
}
@ -1774,9 +1803,6 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *p
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Process locked */
__HAL_LOCK(hspi);
/* Init temporary variables */
tmp_state = hspi->State;
tmp_mode = hspi->Init.Mode;
@ -1794,6 +1820,9 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *p
goto error;
}
/* Process locked */
__HAL_LOCK(hspi);
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
{
@ -1850,8 +1879,6 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *p
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
/* Enable TXE, RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
@ -1860,9 +1887,12 @@ HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *p
__HAL_SPI_ENABLE(hspi);
}
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable TXE, RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
error :
return errorcode;
}

View File

@ -76,7 +76,7 @@
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(SPI_HandleTypeDef *hspi)
HAL_StatusTypeDef HAL_SPIEx_FlushRxFifo(const SPI_HandleTypeDef *hspi)
{
__IO uint32_t tmpreg;
uint8_t count = 0U;

View File

@ -83,15 +83,15 @@
and a pointer to the user callback function.
Use function HAL_SRAM_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
weak (overridden) function. It allows to reset following callbacks:
(+) MspInitCallback : SRAM MspInit.
(+) MspDeInitCallback : SRAM MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_SRAM_Init and if the state is HAL_SRAM_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
all callbacks are reset to the corresponding legacy weak (overridden) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_SRAM_Init
reset to the legacy weak (overridden) functions in the HAL_SRAM_Init
and HAL_SRAM_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_SRAM_Init and HAL_SRAM_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
@ -106,7 +106,7 @@
When The compilation define USE_HAL_SRAM_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
and weak (overridden) callbacks are used.
@endverbatim
******************************************************************************
@ -737,7 +737,7 @@ HAL_StatusTypeDef HAL_SRAM_Write_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddre
#if (USE_HAL_SRAM_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User SRAM Callback
* To be used instead of the weak (surcharged) predefined callback
* To be used to override the weak predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:
@ -757,9 +757,6 @@ HAL_StatusTypeDef HAL_SRAM_RegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hsram);
state = hsram->State;
if ((state == HAL_SRAM_STATE_READY) || (state == HAL_SRAM_STATE_RESET) || (state == HAL_SRAM_STATE_PROTECTED))
{
@ -783,14 +780,12 @@ HAL_StatusTypeDef HAL_SRAM_RegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRAM_
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hsram);
return status;
}
/**
* @brief Unregister a User SRAM Callback
* SRAM Callback is redirected to the weak (surcharged) predefined callback
* SRAM Callback is redirected to the weak predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be unregistered
* This parameter can be one of the following values:
@ -805,9 +800,6 @@ HAL_StatusTypeDef HAL_SRAM_UnRegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRA
HAL_StatusTypeDef status = HAL_OK;
HAL_SRAM_StateTypeDef state;
/* Process locked */
__HAL_LOCK(hsram);
state = hsram->State;
if ((state == HAL_SRAM_STATE_READY) || (state == HAL_SRAM_STATE_PROTECTED))
{
@ -853,14 +845,12 @@ HAL_StatusTypeDef HAL_SRAM_UnRegisterCallback(SRAM_HandleTypeDef *hsram, HAL_SRA
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hsram);
return status;
}
/**
* @brief Register a User SRAM Callback for DMA transfers
* To be used instead of the weak (surcharged) predefined callback
* To be used to override the weak predefined callback
* @param hsram : SRAM handle
* @param CallbackId : ID of the callback to be registered
* This parameter can be one of the following values:

View File

@ -894,7 +894,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
@ -986,7 +986,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
@ -1065,7 +1065,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Set the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
@ -1227,7 +1227,7 @@ HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
@ -1565,7 +1565,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
@ -1657,7 +1657,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
@ -1736,7 +1736,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channe
uint32_t tmpsmcr;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Set the TIM channel state */
if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
@ -1897,7 +1897,7 @@ HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
@ -2141,7 +2141,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
@ -2189,7 +2189,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
{
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Disable the Input Capture channel */
TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
@ -2225,7 +2225,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
/* Check the TIM channel state */
if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
@ -2313,7 +2313,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
switch (Channel)
{
@ -2389,7 +2389,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel
HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
/* Set the TIM channel state */
@ -2544,7 +2544,7 @@ HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
/* Disable the Input Capture channel */
@ -3841,13 +3841,16 @@ HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Cha
*/
void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
{
uint32_t itsource = htim->Instance->DIER;
uint32_t itflag = htim->Instance->SR;
/* Capture compare 1 event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
{
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
/* Input capture event */
@ -3875,11 +3878,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* Capture compare 2 event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
/* Input capture event */
if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
@ -3905,11 +3908,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* Capture compare 3 event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
@ -3935,11 +3938,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* Capture compare 4 event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4);
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
/* Input capture event */
if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
@ -3965,11 +3968,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* TIM Update event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->PeriodElapsedCallback(htim);
#else
@ -3978,11 +3981,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* TIM Break input event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
if ((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->BreakCallback(htim);
#else
@ -3992,9 +3995,9 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
#if defined(TIM_BDTR_BK2E)
/* TIM Break2 input event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET)
if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
{
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
@ -4006,11 +4009,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
#endif /* TIM_BDTR_BK2E */
/* TIM Trigger detection event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
{
__HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->TriggerCallback(htim);
#else
@ -4019,11 +4022,11 @@ void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
}
}
/* TIM commutation event */
if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
{
if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
{
__HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
__HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM);
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
htim->CommutationCallback(htim);
#else
@ -4583,7 +4586,8 @@ HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_O
* @retval HAL status
*/
HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength)
uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
uint32_t BurstLength)
{
HAL_StatusTypeDef status;
@ -7004,6 +7008,13 @@ void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure
/* Generate an update event to reload the Prescaler
and the repetition counter (only for advanced timer) value immediately */
TIMx->EGR = TIM_EGR_UG;
/* Check if the update flag is set after the Update Generation, if so clear the UIF flag */
if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE))
{
/* Clear the update flag */
CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE);
}
}
/**
@ -7018,11 +7029,12 @@ static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Co
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= ~TIM_CCER_CC1E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
@ -7093,11 +7105,12 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC2E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
@ -7126,7 +7139,6 @@ void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
tmpccer |= (OC_Config->OCNPolarity << 4U);
/* Reset the Output N State */
tmpccer &= ~TIM_CCER_CC2NE;
}
if (IS_TIM_BREAK_INSTANCE(TIMx))
@ -7171,11 +7183,12 @@ static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Co
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 3: Reset the CC2E Bit */
TIMx->CCER &= ~TIM_CCER_CC3E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
@ -7247,11 +7260,12 @@ static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Co
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the Channel 4: Reset the CC4E Bit */
TIMx->CCER &= ~TIM_CCER_CC4E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
@ -7311,11 +7325,12 @@ static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the output: Reset the CCxE Bit */
TIMx->CCER &= ~TIM_CCER_CC5E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
@ -7366,11 +7381,12 @@ static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
uint32_t tmpccer;
uint32_t tmpcr2;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Disable the output: Reset the CCxE Bit */
TIMx->CCER &= ~TIM_CCER_CC6E;
/* Get the TIMx CCER register value */
tmpccer = TIMx->CCER;
/* Get the TIMx CR2 register value */
tmpcr2 = TIMx->CR2;
/* Get the TIMx CCMR1 register value */
@ -7555,9 +7571,9 @@ void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_
uint32_t tmpccer;
/* Disable the Channel 1: Reset the CC1E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC1E;
tmpccmr1 = TIMx->CCMR1;
tmpccer = TIMx->CCER;
/* Select the Input */
if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
@ -7645,9 +7661,9 @@ static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC2E;
tmpccmr1 = TIMx->CCMR1;
tmpccer = TIMx->CCER;
/* Select the Input */
tmpccmr1 &= ~TIM_CCMR1_CC2S;
@ -7684,9 +7700,9 @@ static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity,
uint32_t tmpccer;
/* Disable the Channel 2: Reset the CC2E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC2E;
tmpccmr1 = TIMx->CCMR1;
tmpccer = TIMx->CCER;
/* Set the filter */
tmpccmr1 &= ~TIM_CCMR1_IC2F;
@ -7728,9 +7744,9 @@ static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
uint32_t tmpccer;
/* Disable the Channel 3: Reset the CC3E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC3E;
tmpccmr2 = TIMx->CCMR2;
tmpccer = TIMx->CCER;
/* Select the Input */
tmpccmr2 &= ~TIM_CCMR2_CC3S;
@ -7776,9 +7792,9 @@ static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32
uint32_t tmpccer;
/* Disable the Channel 4: Reset the CC4E Bit */
tmpccer = TIMx->CCER;
TIMx->CCER &= ~TIM_CCER_CC4E;
tmpccmr2 = TIMx->CCMR2;
tmpccer = TIMx->CCER;
/* Select the Input */
tmpccmr2 &= ~TIM_CCMR2_CC4S;

View File

@ -837,7 +837,7 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channe
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET)
if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
@ -1083,17 +1083,6 @@ HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Chann
(+) Stop the Complementary PWM and disable interrupts.
(+) Start the Complementary PWM and enable DMA transfers.
(+) Stop the Complementary PWM and disable DMA transfers.
(+) Start the Complementary Input Capture measurement.
(+) Stop the Complementary Input Capture.
(+) Start the Complementary Input Capture and enable interrupts.
(+) Stop the Complementary Input Capture and disable interrupts.
(+) Start the Complementary Input Capture and enable DMA transfers.
(+) Stop the Complementary Input Capture and disable DMA transfers.
(+) Start the Complementary One Pulse generation.
(+) Stop the Complementary One Pulse.
(+) Start the Complementary One Pulse and enable interrupts.
(+) Stop the Complementary One Pulse and disable interrupts.
@endverbatim
* @{
*/
@ -1319,7 +1308,7 @@ HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Chann
/* Disable the TIM Break interrupt (only if no more channel is active) */
tmpccer = htim->Instance->CCER;
if ((tmpccer & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == (uint32_t)RESET)
if ((tmpccer & TIM_CCER_CCxNE_MASK) == (uint32_t)RESET)
{
__HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK);
}
@ -2260,7 +2249,7 @@ HAL_StatusTypeDef HAL_TIMEx_GroupChannel5(TIM_HandleTypeDef *htim, uint32_t Chan
*/
/**
* @brief Hall commutation changed callback in non-blocking mode
* @brief Commutation callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
@ -2274,7 +2263,7 @@ __weak void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim)
*/
}
/**
* @brief Hall commutation changed half complete callback in non-blocking mode
* @brief Commutation half complete callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
@ -2289,7 +2278,7 @@ __weak void HAL_TIMEx_CommutHalfCpltCallback(TIM_HandleTypeDef *htim)
}
/**
* @brief Hall Break detection callback in non-blocking mode
* @brief Break detection callback in non-blocking mode
* @param htim TIM handle
* @retval None
*/
@ -2305,7 +2294,7 @@ __weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim)
#if defined(TIM_BDTR_BK2E)
/**
* @brief Hall Break2 detection callback in non blocking mode
* @brief Break2 detection callback in non blocking mode
* @param htim: TIM handle
* @retval None
*/
@ -2457,15 +2446,6 @@ static void TIM_DMADelayPulseNCplt(DMA_HandleTypeDef *hdma)
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
}
}
else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
{
htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
if (hdma->Init.Mode == DMA_NORMAL)
{
TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
}
}
else
{
/* nothing to do */
@ -2534,13 +2514,13 @@ static void TIM_CCxNChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Cha
{
uint32_t tmp;
tmp = TIM_CCER_CC1NE << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
tmp = TIM_CCER_CC1NE << (Channel & 0xFU); /* 0xFU = 15 bits max shift */
/* Reset the CCxNE Bit */
TIMx->CCER &= ~tmp;
/* Set or reset the CCxNE Bit */
TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
TIMx->CCER |= (uint32_t)(ChannelNState << (Channel & 0xFU)); /* 0xFU = 15 bits max shift */
}
/**
* @}

View File

@ -103,19 +103,19 @@ HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
HAL_StatusTypeDef status;
#ifdef RTC_CLOCK_SOURCE_LSE
/* Configue LSE as RTC clock soucre */
/* Configure LSE as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
#elif defined (RTC_CLOCK_SOURCE_LSI)
/* Configue LSI as RTC clock soucre */
/* Configure LSI as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
#elif defined (RTC_CLOCK_SOURCE_HSE)
/* Configue HSE as RTC clock soucre */
/* Configure HSE as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;

View File

@ -110,19 +110,19 @@ HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
HAL_StatusTypeDef status;
#ifdef RTC_CLOCK_SOURCE_LSE
/* Configue LSE as RTC clock soucre */
/* Configure LSE as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
#elif defined (RTC_CLOCK_SOURCE_LSI)
/* Configue LSI as RTC clock soucre */
/* Configure LSI as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
#elif defined (RTC_CLOCK_SOURCE_HSE)
/* Configue HSE as RTC clock soucre */
/* Configure HSE as RTC clock source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;

View File

@ -105,7 +105,7 @@
[..]
Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
weak function.
HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
@ -127,10 +127,10 @@
[..]
By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
all callbacks are set to the corresponding weak (surcharged) functions:
all callbacks are set to the corresponding weak functions:
examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
Exception done for MspInit and MspDeInit functions that are respectively
reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
reset to the legacy weak functions in the HAL_UART_Init()
and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
@ -147,7 +147,7 @@
[..]
When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available
and weak (surcharged) callbacks are used.
and weak callbacks are used.
@endverbatim
@ -191,8 +191,8 @@
/** @addtogroup UART_Private_Functions
* @{
*/
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
@ -330,17 +330,19 @@ HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
__HAL_UART_DISABLE(huart);
/* Perform advanced settings configuration */
/* For some items, configuration requires to be done prior TE and RE bits are set */
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* In asynchronous mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
@ -395,17 +397,19 @@ HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
__HAL_UART_DISABLE(huart);
/* Perform advanced settings configuration */
/* For some items, configuration requires to be done prior TE and RE bits are set */
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* In half-duplex mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.*/
@ -481,17 +485,19 @@ HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLe
__HAL_UART_DISABLE(huart);
/* Perform advanced settings configuration */
/* For some items, configuration requires to be done prior TE and RE bits are set */
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* In LIN mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.*/
@ -565,17 +571,19 @@ HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Add
__HAL_UART_DISABLE(huart);
/* Perform advanced settings configuration */
/* For some items, configuration requires to be done prior TE and RE bits are set */
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* In multiprocessor mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN, HDSEL and IREN bits in the USART_CR3 register. */
@ -678,7 +686,7 @@ __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User UART Callback
* To be used instead of the weak predefined callback
* To be used to override the weak predefined callback
* @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
* HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register
* callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
@ -926,10 +934,7 @@ HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pU
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(huart);
if (huart->gState == HAL_UART_STATE_READY)
if (huart->RxState == HAL_UART_STATE_READY)
{
huart->RxEventCallback = pCallback;
}
@ -940,9 +945,6 @@ HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pU
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(huart);
return status;
}
@ -956,10 +958,7 @@ HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(huart);
if (huart->gState == HAL_UART_STATE_READY)
if (huart->RxState == HAL_UART_STATE_READY)
{
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
}
@ -970,8 +969,6 @@ HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(huart);
return status;
}
@ -3012,6 +3009,13 @@ void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
/* Check whether the set of advanced features to configure is properly set */
assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
/* if required, configure RX/TX pins swap */
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
{
assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
}
/* if required, configure TX pin active level inversion */
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
{
@ -3033,13 +3037,6 @@ void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
}
/* if required, configure RX/TX pins swap */
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
{
assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
}
/* if required, configure RX overrun detection disabling */
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
{
@ -3165,7 +3162,7 @@ HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_
return HAL_TIMEOUT;
}
if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U)
if ((READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) && (Flag != UART_FLAG_TXE) && (Flag != UART_FLAG_TC))
{
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET)
{

View File

@ -193,17 +193,19 @@ HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity,
/* Disable the Peripheral */
__HAL_UART_DISABLE(huart);
/* Perform advanced settings configuration */
/* For some items, configuration requires to be done prior TE and RE bits are set */
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Set the UART Communication parameters */
if (UART_SetConfig(huart) == HAL_ERROR)
{
return HAL_ERROR;
}
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
{
UART_AdvFeatureConfig(huart);
}
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
@ -597,7 +599,7 @@ HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *p
*/
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status;
HAL_StatusTypeDef status = HAL_OK;
/* Check that a Rx process is not already ongoing */
if (huart->RxState == HAL_UART_STATE_READY)
@ -611,11 +613,8 @@ HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
huart->RxEventType = HAL_UART_RXEVENT_TC;
status = UART_Start_Receive_IT(huart, pData, Size);
(void)UART_Start_Receive_IT(huart, pData, Size);
/* Check Rx process has been successfully started */
if (status == HAL_OK)
{
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
{
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
@ -629,7 +628,6 @@ HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
status = HAL_ERROR;
}
}
return status;
}
@ -724,7 +722,7 @@ HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_
* @param huart UART handle.
* @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
*/
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart)
{
/* Return Rx Event type value, as stored in UART handle */
return (huart->RxEventType);

View File

@ -89,7 +89,7 @@
[..]
Use function HAL_USART_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
weak function.
HAL_USART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
@ -105,10 +105,10 @@
[..]
By default, after the HAL_USART_Init() and when the state is HAL_USART_STATE_RESET
all callbacks are set to the corresponding weak (surcharged) functions:
all callbacks are set to the corresponding weak functions:
examples HAL_USART_TxCpltCallback(), HAL_USART_RxHalfCpltCallback().
Exception done for MspInit and MspDeInit functions that are respectively
reset to the legacy weak (surcharged) functions in the HAL_USART_Init()
reset to the legacy weak functions in the HAL_USART_Init()
and HAL_USART_DeInit() only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_USART_Init() and HAL_USART_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
@ -125,7 +125,7 @@
[..]
When The compilation define USE_HAL_USART_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available
and weak (surcharged) callbacks are used.
and weak callbacks are used.
@endverbatim
@ -140,7 +140,7 @@
*/
/** @defgroup USART USART
* @brief HAL USART Synchronous module driver
* @brief HAL USART Synchronous SPI module driver
* @{
*/
@ -212,8 +212,8 @@ static void USART_RxISR_16BIT(USART_HandleTypeDef *husart);
===============================================================================
[..]
This subsection provides a set of functions allowing to initialize the USART
in asynchronous and in synchronous modes.
(+) For the asynchronous mode only these parameters can be configured:
in synchronous SPI master mode.
(+) For the synchronous SPI mode only these parameters can be configured:
(++) Baud Rate
(++) Word Length
(++) Stop Bit
@ -225,7 +225,7 @@ static void USART_RxISR_16BIT(USART_HandleTypeDef *husart);
(++) Receiver/transmitter modes
[..]
The HAL_USART_Init() function follows the USART synchronous configuration
The HAL_USART_Init() function follows the USART synchronous SPI configuration
procedure (details for the procedure are available in reference manual).
@endverbatim
@ -314,7 +314,7 @@ HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart)
return HAL_ERROR;
}
/* In Synchronous mode, the following bits must be kept cleared:
/* In Synchronous SPI mode, the following bits must be kept cleared:
- LINEN bit in the USART_CR2 register
- HDSEL, SCEN and IREN bits in the USART_CR3 register.
*/
@ -404,7 +404,7 @@ __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart)
#if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User USART Callback
* To be used instead of the weak predefined callback
* To be used to override the weak predefined callback
* @note The HAL_USART_RegisterCallback() may be called before HAL_USART_Init() in HAL_USART_STATE_RESET
* to register callbacks for HAL_USART_MSPINIT_CB_ID and HAL_USART_MSPDEINIT_CB_ID
* @param husart usart handle
@ -637,10 +637,10 @@ HAL_StatusTypeDef HAL_USART_UnRegisterCallback(USART_HandleTypeDef *husart, HAL_
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to manage the USART synchronous
[..] This subsection provides a set of functions allowing to manage the USART synchronous SPI
data transfers.
[..] The USART supports master mode only: it cannot receive or send data related to an input
[..] The USART Synchronous SPI supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).
[..]
@ -2730,7 +2730,7 @@ static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart)
/* Clear and configure the USART Clock, CPOL, CPHA, LBCL and STOP bits:
* set CPOL bit according to husart->Init.CLKPolarity value
* set CPHA bit according to husart->Init.CLKPhase value
* set LBCL bit according to husart->Init.CLKLastBit value (used in SPI master mode only)
* set LBCL bit according to husart->Init.CLKLastBit value (used in USART Synchronous SPI master mode only)
* set STOP[13:12] bits according to husart->Init.StopBits value */
tmpreg = (uint32_t)(USART_CLOCK_ENABLE);
tmpreg |= (uint32_t)husart->Init.CLKLastBit;

View File

@ -122,7 +122,6 @@
(+) __HAL_WWDG_ENABLE_IT: Enable the WWDG early wakeup interrupt
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
@ -418,3 +417,4 @@ __weak void HAL_WWDG_EarlyWakeupCallback(WWDG_HandleTypeDef *hwwdg)
/**
* @}
*/

View File

@ -794,7 +794,8 @@ ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx)
while (( LL_ADC_REG_IsStopConversionOngoing(ADCx)
| LL_ADC_INJ_IsStopConversionOngoing(ADCx)) == 1U)
{
if(timeout_cpu_cycles-- == 0U)
timeout_cpu_cycles--;
if(timeout_cpu_cycles == 0U)
{
/* Time-out error */
status = ERROR;
@ -813,7 +814,8 @@ ErrorStatus LL_ADC_DeInit(ADC_TypeDef *ADCx)
timeout_cpu_cycles = ADC_TIMEOUT_DISABLE_CPU_CYCLES;
while (LL_ADC_IsDisableOngoing(ADCx) == 1U)
{
if(timeout_cpu_cycles-- == 0U)
timeout_cpu_cycles--;
if(timeout_cpu_cycles == 0U)
{
/* Time-out error */
status = ERROR;

View File

@ -59,7 +59,8 @@
/** @addtogroup STM32F3xx_HAL_Driver
* @{
*/
#if defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_SRAM_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_PCCARD_MODULE_ENABLED)
#if defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_PCCARD_MODULE_ENABLED) \
|| defined(HAL_SRAM_MODULE_ENABLED)
/** @defgroup FMC_LL FMC Low Layer
* @brief FMC driver modules
@ -339,13 +340,14 @@ HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device,
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Set FMC_NORSRAM device timing parameters */
MODIFY_REG(Device->BTCR[Bank + 1U], BTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BTRx_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BTRx_DATAST_Pos) |
((Timing->BusTurnAroundDuration) << FMC_BTRx_BUSTURN_Pos) |
(((Timing->CLKDivision) - 1U) << FMC_BTRx_CLKDIV_Pos) |
(((Timing->DataLatency) - 2U) << FMC_BTRx_DATLAT_Pos) |
(Timing->AccessMode)));
Device->BTCR[Bank + 1U] =
(Timing->AddressSetupTime << FMC_BTRx_ADDSET_Pos) |
(Timing->AddressHoldTime << FMC_BTRx_ADDHLD_Pos) |
(Timing->DataSetupTime << FMC_BTRx_DATAST_Pos) |
(Timing->BusTurnAroundDuration << FMC_BTRx_BUSTURN_Pos) |
((Timing->CLKDivision - 1U) << FMC_BTRx_CLKDIV_Pos) |
((Timing->DataLatency - 2U) << FMC_BTRx_DATLAT_Pos) |
Timing->AccessMode;
/* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */
if (HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN))

View File

@ -67,8 +67,8 @@
|| ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
|| ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
|| ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
|| ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
|| ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
|| ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \
|| ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2))
#else
#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
|| ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
@ -495,10 +495,12 @@ ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_
case LL_TIM_CHANNEL_CH5:
result = OC5Config(TIMx, TIM_OC_InitStruct);
break;
#endif /* TIM_CCER_CC5E */
#if defined(TIM_CCER_CC6E)
case LL_TIM_CHANNEL_CH6:
result = OC6Config(TIMx, TIM_OC_InitStruct);
break;
#endif /* TIM_CCER_CC5E */
#endif /* TIM_CCER_CC6E */
default:
break;
}
@ -813,6 +815,9 @@ ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *T
assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
#if defined(TIM_BDTR_BKF)
assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
#endif /* TIM_BDTR_BKF */
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
the OSSI State, the dead time value and the Automatic Output Enable Bit */
@ -825,9 +830,7 @@ ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *T
MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
#if defined(TIM_BDTR_BKF)
assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
#endif /* TIM_BDTR_BKF */
#if defined(TIM_BDTR_BK2E)
@ -881,8 +884,6 @@ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 1: Reset the CC1E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
@ -910,8 +911,10 @@ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
@ -960,8 +963,6 @@ static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 2: Reset the CC2E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
@ -989,8 +990,10 @@ static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
@ -1042,8 +1045,6 @@ static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 3: Reset the CC3E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
@ -1071,8 +1072,10 @@ static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
@ -1124,8 +1127,6 @@ static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
/* Disable the Channel 4: Reset the CC4E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
@ -1153,7 +1154,6 @@ static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
#if defined(STM32F373xC) || defined(STM32F378xx)
@ -1240,7 +1240,9 @@ static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
return SUCCESS;
}
#endif /* TIM_CCER_CC5E */
#if defined(TIM_CCER_CC6E)
/**
* @brief Configure the TIMx output channel 6.
* @param TIMx Timer Instance
@ -1301,7 +1303,7 @@ static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM
return SUCCESS;
}
#endif /* TIM_CCER_CC5E */
#endif /* TIM_CCER_CC6E */
/**
* @brief Configure the TIMx input channel 1.
@ -1427,7 +1429,7 @@ static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM
(TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
(TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
/* Select the Polarity and set the CC2E Bit */
/* Select the Polarity and set the CC4E Bit */
MODIFY_REG(TIMx->CCER,
(TIM_CCER_CC4P | TIM_CCER_CC4NP),
((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));

View File

@ -172,6 +172,47 @@ HAL_StatusTypeDef USB_DevInit(USB_TypeDef *USBx, USB_CfgTypeDef cfg)
return HAL_OK;
}
/**
* @brief USB_FlushTxFifo : Flush a Tx FIFO
* @param USBx : Selected device
* @param num : FIFO number
* This parameter can be a value from 1 to 15
15 means Flush all Tx FIFOs
* @retval HAL status
*/
HAL_StatusTypeDef USB_FlushTxFifo(USB_TypeDef const *USBx, uint32_t num)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
UNUSED(num);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
/**
* @brief USB_FlushRxFifo : Flush Rx FIFO
* @param USBx : Selected device
* @retval HAL status
*/
HAL_StatusTypeDef USB_FlushRxFifo(USB_TypeDef const *USBx)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(USBx);
/* NOTE : - This function is not required by USB Device FS peripheral, it is used
only by USB OTG FS peripheral.
- This function is added to ensure compatibility across platforms.
*/
return HAL_OK;
}
#if defined (HAL_PCD_MODULE_ENABLED)
/**
* @brief Activate and configure an endpoint
@ -761,7 +802,7 @@ HAL_StatusTypeDef USB_DevDisconnect(USB_TypeDef *USBx)
* @param USBx Selected device
* @retval USB Global Interrupt status
*/
uint32_t USB_ReadInterrupts(USB_TypeDef *USBx)
uint32_t USB_ReadInterrupts(USB_TypeDef const *USBx)
{
uint32_t tmpreg;
@ -801,7 +842,7 @@ HAL_StatusTypeDef USB_DeActivateRemoteWakeup(USB_TypeDef *USBx)
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
void USB_WritePMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
void USB_WritePMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
{
uint32_t n = ((uint32_t)wNBytes + 1U) >> 1;
uint32_t BaseAddr = (uint32_t)USBx;
@ -836,7 +877,7 @@ void USB_WritePMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, ui
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
void USB_ReadPMA(USB_TypeDef *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
void USB_ReadPMA(USB_TypeDef const *USBx, uint8_t *pbUsrBuf, uint16_t wPMABufAddr, uint16_t wNBytes)
{
uint32_t n = (uint32_t)wNBytes >> 1;
uint32_t BaseAddr = (uint32_t)USBx;

View File

@ -266,8 +266,6 @@ ErrorStatus LL_SetFlashLatency(uint32_t Frequency)
}
}
if (status != ERROR)
{
LL_FLASH_SetLatency(latency);
/* Check that the new number of wait states is taken into account to access the Flash
@ -285,7 +283,6 @@ ErrorStatus LL_SetFlashLatency(uint32_t Frequency)
status = ERROR;
}
}
}
return status;
}

View File

@ -115,8 +115,8 @@ Mcu.PinsNb=38
Mcu.ThirdPartyNb=0
Mcu.UserConstants=
Mcu.UserName=STM32F302RBTx
MxCube.Version=6.9.2
MxDb.Version=DB.6.0.92
MxCube.Version=6.11.1
MxDb.Version=DB.6.0.111
NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
NVIC.CAN_RX1_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true
NVIC.CAN_SCE_IRQn=true\:0\:0\:false\:false\:true\:true\:true\:true
@ -281,7 +281,7 @@ ProjectManager.CustomerFirmwarePackage=
ProjectManager.DefaultFWLocation=true
ProjectManager.DeletePrevious=true
ProjectManager.DeviceId=STM32F302RBTx
ProjectManager.FirmwarePackage=STM32Cube FW_F3 V1.11.4
ProjectManager.FirmwarePackage=STM32Cube FW_F3 V1.11.5
ProjectManager.FreePins=false
ProjectManager.HalAssertFull=false
ProjectManager.HeapSize=0x200

View File

@ -44,6 +44,8 @@ Core/Src/can-halal.c \
Core/Src/main.c \
Core/Src/stm32f3xx_hal_msp.c \
Core/Src/stm32f3xx_it.c \
Core/Src/syscalls.c \
Core/Src/sysmem.c \
Core/Src/system_stm32f3xx.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal.c \
Drivers/STM32F3xx_HAL_Driver/Src/stm32f3xx_hal_adc.c \
@ -83,7 +85,7 @@ PREFIX = arm-none-eabi-
POSTFIX = "
# The gcc compiler bin path can be either defined in make command via GCC_PATH variable (> make GCC_PATH=xxx)
# either it can be added to the PATH environment variable.
GCC_PATH="c:/Users/nived/AppData/Roaming/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/arm-none-eabi-gcc/12.3.1-1.2.1/.content/bin
GCC_PATH="c:/Users/GETAC/AppData/Roaming/Code/User/globalStorage/bmd.stm32-for-vscode/@xpack-dev-tools/arm-none-eabi-gcc/13.2.1-1.1.1/.content/bin
ifdef GCC_PATH
CXX = $(GCC_PATH)/$(PREFIX)g++$(POSTFIX)
CC = $(GCC_PATH)/$(PREFIX)gcc$(POSTFIX)
@ -236,13 +238,13 @@ $(BUILD_DIR):
# flash
#######################################
flash: $(BUILD_DIR)/$(TARGET).elf
"C:/USERS/NIVED/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.12.0-2.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "program $(BUILD_DIR)/$(TARGET).elf verify reset exit"
"C:/USERS/GETAC/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.12.0-3.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "program $(BUILD_DIR)/$(TARGET).elf verify reset exit"
#######################################
# erase
#######################################
erase: $(BUILD_DIR)/$(TARGET).elf
"C:/USERS/NIVED/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.12.0-2.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "init; reset halt; stm32f3x mass_erase 0; exit"
"C:/USERS/GETAC/APPDATA/ROAMING/CODE/USER/GLOBALSTORAGE/BMD.STM32-FOR-VSCODE/@XPACK-DEV-TOOLS/OPENOCD/0.12.0-3.1/.CONTENT/BIN/OPENOCD.EXE" -f ./openocd.cfg -c "init; reset halt; stm32f3x mass_erase 0; exit"
#######################################
# clean up