124 lines
5.9 KiB
Matlab
124 lines
5.9 KiB
Matlab
function [pltData] = sortdata(data,start,stop)
|
|
date = dateshift(data.Time(1),'start','day');
|
|
time_hms = data.Time-date;
|
|
time_s = seconds(time_hms);
|
|
time_s = time_s - time_s(1); % set beginning of session to 0
|
|
|
|
% x-Axis:
|
|
pltData.Time = data.Time(start:stop);
|
|
pltData.time_s = time_s(start:stop)-time_s(start);
|
|
pltData.time_hms = time_hms(start:stop);
|
|
|
|
% distance calculation
|
|
speed_mps = movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % TODO: test different speed filters for distance calculation
|
|
pltData.distance(1) = 0;
|
|
for i = 2:length(speed_mps)
|
|
pltData.distance(i) = speed_mps(i)*(pltData.time_s(i)-pltData.time_s(i-1)) + pltData.distance(i-1);
|
|
end
|
|
pltData.xAxis = pltData.time_s; % set time as default x-Axis for plotting
|
|
|
|
%% Misc
|
|
pltData.app_percent = data.ABX_Driver_ABX_APPS_percent(start:stop);
|
|
pltData.speed_kph = 3.6*movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % same filter as for distance calculation ???
|
|
pltData.steering_deg = data.ABX_Driver_ABX_Steering_Angle(start:stop);
|
|
|
|
%% AMS:
|
|
pltData.ams_soc = data.AMS_Status_SOC(start:stop);
|
|
pltData.ams_tmax = data.AMS_Status_Max_cell_temp(start:stop);
|
|
pltData.ams_utot = data.Shunt_Voltage1_Shunt_Voltage1(start:stop);
|
|
pltData.ams_itot = data.Shunt_Current_Shunt_Current(start:stop);
|
|
% calculations:
|
|
pltData.ams_ptot = pltData.ams_utot.*pltData.ams_itot/1000;
|
|
|
|
%% Brakes
|
|
% brake pressure
|
|
pltData.brakePFront_bar = data.ABX_Driver_ABX_BrakeP_F(start:stop);
|
|
pltData.brakePRear_bar = data.ABX_Driver_ABX_BrakeP_R(start:stop);
|
|
% brake disc temperatures
|
|
pltData.brakeTFrontLeft_degC = data.ABX_BrakeT_ABX_BrakeT_FL(start:stop);
|
|
pltData.brakeTFrontRight_degC = data.ABX_BrakeT_ABX_BrakeT_FR(start:stop);
|
|
pltData.brakeTRearLeft_degC = data.ABX_BrakeT_ABX_BrakeT_RL(start:stop);
|
|
pltData.brakeTRearRight_degC = data.ABX_BrakeT_ABX_BrakeT_RR(start:stop);
|
|
% calculate brake bias [%]
|
|
minBrakeP = 5; % minimum brake pressure to avoid artifacts due to sensor noise near 0 bar
|
|
brakePFront = pltData.brakePFront_bar;
|
|
brakePFront(brakePFront < minBrakeP) = minBrakeP;
|
|
brakePRear = pltData.brakePRear_bar;
|
|
brakePRear(brakePRear < minBrakeP) = minBrakeP;
|
|
pltData.brakeBias_perc = 100*brakePFront./brakePRear; % check calculation!
|
|
|
|
%% Cooling system
|
|
|
|
%% Dampers
|
|
% damper positions
|
|
pltData.damper_FL_mm = data.ABX_Dampers_ABX_Damper_FL(start:stop); %Heave_F
|
|
pltData.damper_FR_mm = data.ABX_Dampers_ABX_Damper_FR(start:stop); %Roll_F
|
|
pltData.damper_RL_mm = data.ABX_Dampers_ABX_Damper_RL(start:stop); %Heave_R
|
|
pltData.damper_RR_mm = data.ABX_Dampers_ABX_Damper_RR(start:stop); %Roll_R
|
|
% calculate damper velocities
|
|
pltData.velocity_FL_mmps(1) = 0;
|
|
pltData.velocity_FR_mmps(1) = 0;
|
|
pltData.velocity_RL_mmps(1) = 0;
|
|
pltData.velocity_RR_mmps(1) = 0;
|
|
for i = 2:length(pltData.time_s)
|
|
timestep = pltData.time_s(i)-pltData.time_s(i-1);
|
|
pltData.velocity_FL_mmps(i) = pltData.damper_FL_mm(i)-pltData.damper_FL_mm(i-1)/timestep;
|
|
pltData.velocity_FR_mmps(i) = pltData.damper_FR_mm(i)-pltData.damper_FR_mm(i-1)/timestep;
|
|
pltData.velocity_RL_mmps(i) = pltData.damper_RL_mm(i)-pltData.damper_RL_mm(i-1)/timestep;
|
|
pltData.velocity_RR_mmps(i) = pltData.damper_RR_mm(i)-pltData.damper_RR_mm(i-1)/timestep;
|
|
end
|
|
% filter damper velocities ??? bessere Berechnung über mittelwert aus mehreren werten? Vorfilterung?
|
|
pltData.velocity_FL_mmps = movmean(pltData.velocity_FL_mmps,100);
|
|
pltData.velocity_FR_mmps = movmean(pltData.velocity_FR_mmps,100);
|
|
pltData.velocity_RL_mmps = movmean(pltData.velocity_RL_mmps,100);
|
|
pltData.velocity_RR_mmps = movmean(pltData.velocity_RR_mmps,100);
|
|
|
|
%% IMU
|
|
% Acceleration
|
|
% pltData.acc_long_g = movmean(data.XSens_Acceleration_XSens_accX(start:stop),100)/9.81;
|
|
% pltData.acc_lat_g = movmean(data.XSens_Acceleration_XSens_accY(start:stop),100)/9.81;
|
|
% Rate of turn
|
|
% pltData.rot_roll_degps = movmean(data.XSens_RateOfTurn_XSens_gyrX(start:stop),100);
|
|
% pltData.rot_pitch_degps = movmean(data.XSens_RateOfTurn_XSens_gyrY(start:stop),100);
|
|
% pltData.rot_yaw_degps = movmean(data.XSens_RateOfTurn_XSens_gyrZ(start:stop),100);
|
|
|
|
%% Inverters
|
|
% inverter temperatures
|
|
pltData.invL_temp = data.INV_L_TxPDO_1_T_Inv_L(start:stop);
|
|
pltData.invR_temp = data.INV_R_TxPDO_1_T_Inv_R(start:stop);
|
|
% motor temperatures
|
|
pltData.motL_temp = data.INV_L_TxPDO_1_T_Mot_L(start:stop);
|
|
pltData.motR_temp = data.INV_R_TxPDO_1_T_Mot_R(start:stop);
|
|
% motor velocities
|
|
pltData.motL_vel_rpm = 60*data.INV_L_TxPDO_4_Velocity_L(start:stop);
|
|
pltData.motR_vel_rpm = 60*data.INV_R_TxPDO_4_Velocity_R(start:stop);
|
|
% inverter torque demand
|
|
pltData.invL_torqueDemand = data.INV_L_TxPDO_3_DemandedTorque_L(start:stop)/10; % /10 to match autobox torque
|
|
pltData.invR_torqueDemand = data.INV_R_TxPDO_3_DemandedTorque_R(start:stop)/10;
|
|
% inverter actual torque
|
|
pltData.invL_torqueActual = data.INV_L_TxPDO_3_ActualTorque_L(start:stop)/10;
|
|
pltData.invR_torqueActual = data.INV_R_TxPDO_3_ActualTorque_R(start:stop)/10;
|
|
|
|
%% Wheelspeed
|
|
|
|
|
|
|
|
|
|
%% Statistics:
|
|
power_regen_kw = pltData.ams_ptot;
|
|
power_regen_kw(power_regen_kw > 0) = 0;
|
|
power_used_kw = pltData.ams_ptot;
|
|
power_used_kw(power_used_kw < 0) = 0;
|
|
pltData.energy_kwh = trapz(pltData.time_s, pltData.ams_ptot)/3600;
|
|
pltData.energy_regen_kwh = trapz(pltData.time_s, power_regen_kw)/3600;
|
|
pltData.energy_used_kwh = trapz(pltData.time_s, power_used_kw)/3600;
|
|
pltData.distanceTotal_km = trapz(pltData.time_s, pltData.speed_kph./3.6)/1000; % 1/3.6 for km/h to m/s and /1000 for km output
|
|
pltData.peakPower_kw = max(pltData.ams_ptot);
|
|
pltData.peakPowerMean_kw = max(movmean(pltData.ams_ptot,500));
|
|
|
|
pltData.maxSpeed_kph = max(pltData.speed_kph);
|
|
pltData.startTime = time_hms(start);
|
|
pltData.stopTime = time_hms(stop);
|
|
end
|
|
|