function [pltData] = sortdata(data,start,stop) date = dateshift(data.Time(1),'start','day'); time_hms = data.Time-date; time_s = seconds(time_hms); time_s = time_s - time_s(1); % set beginning of session to 0 % x-Axis: pltData.time_s = time_s(start:stop)-time_s(start); pltData.time_hms = time_hms(start:stop); % distance calculation speed_mps = movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % TODO: test different speed filters for distance calculation pltData.distance(1) = 0; for i = 2:length(speed_mps) pltData.distance(i) = speed_mps(i)*(pltData.time_s(i)-pltData.time_s(i-1)) + pltData.distance(i-1); end pltData.xAxis = pltData.time_s; % set time as default x-Axis for plotting %% Misc pltData.app_percent = data.ABX_Driver_ABX_APPS_percent(start:stop); pltData.speed_kph = 3.6*movmean(data.ABX_Driver_ABX_Speed(start:stop),50); % same filter as for distance calculation ??? pltData.steering_deg = data.ABX_Driver_ABX_Steering_Angle(start:stop); %% AMS: pltData.ams_soc = data.AMS_Status_SOC(start:stop); pltData.ams_tmax = data.AMS_Status_Max_cell_temp(start:stop); pltData.ams_utot = data.Shunt_Voltage1_Shunt_Voltage1(start:stop); pltData.ams_itot = data.Shunt_Current_Shunt_Current(start:stop); % calculations: pltData.ams_ptot = pltData.ams_utot.*pltData.ams_itot/1000; %% Brakes % brake pressure pltData.brakePFront_bar = data.ABX_Driver_ABX_BrakeP_F(start:stop); pltData.brakePRear_bar = data.ABX_Driver_ABX_BrakeP_R(start:stop); % brake disc temperatures pltData.brakeTFrontLeft_degC = data.ABX_BrakeT_ABX_BrakeT_FL(start:stop); pltData.brakeTFrontRight_degC = data.ABX_BrakeT_ABX_BrakeT_FR(start:stop); pltData.brakeTRearLeft_degC = data.ABX_BrakeT_ABX_BrakeT_RL(start:stop); pltData.brakeTRearRight_degC = data.ABX_BrakeT_ABX_BrakeT_RR(start:stop); % calculate brake bias [%] minBrakeP = 5; % minimum brake pressure to avoid artifacts due to sensor noise near 0 bar brakePFront = pltData.brakePFront_bar; brakePFront(brakePFront < minBrakeP) = minBrakeP; brakePRear = pltData.brakePRear_bar; brakePRear(brakePRear < minBrakeP) = minBrakeP; pltData.brakeBias_perc = 100*brakePFront./brakePRear; % check calculation! %% Cooling system %% Dampers % damper positions pltData.damper_FL_mm = data.ABX_Dampers_ABX_Damper_FL(start:stop); %Heave_F pltData.damper_FR_mm = data.ABX_Dampers_ABX_Damper_FR(start:stop); %Roll_F pltData.damper_RL_mm = data.ABX_Dampers_ABX_Damper_RL(start:stop); %Heave_R pltData.damper_RR_mm = data.ABX_Dampers_ABX_Damper_RR(start:stop); %Roll_R % calculate damper velocities pltData.velocity_FL_mmps(1) = 0; pltData.velocity_FR_mmps(1) = 0; pltData.velocity_RL_mmps(1) = 0; pltData.velocity_RR_mmps(1) = 0; for i = 2:length(pltData.time_s) timestep = pltData.time_s(i)-pltData.time_s(i-1); pltData.velocity_FL_mmps(i) = pltData.damper_FL_mm(i)-pltData.damper_FL_mm(i-1)/timestep; pltData.velocity_FR_mmps(i) = pltData.damper_FR_mm(i)-pltData.damper_FR_mm(i-1)/timestep; pltData.velocity_RL_mmps(i) = pltData.damper_RL_mm(i)-pltData.damper_RL_mm(i-1)/timestep; pltData.velocity_RR_mmps(i) = pltData.damper_RR_mm(i)-pltData.damper_RR_mm(i-1)/timestep; end % filter damper velocities ??? bessere Berechnung über mittelwert aus mehreren werten? Vorfilterung? pltData.velocity_FL_mmps = movmean(pltData.velocity_FL_mmps,100); pltData.velocity_FR_mmps = movmean(pltData.velocity_FR_mmps,100); pltData.velocity_RL_mmps = movmean(pltData.velocity_RL_mmps,100); pltData.velocity_RR_mmps = movmean(pltData.velocity_RR_mmps,100); %% IMU % Acceleration % pltData.acc_long_g = movmean(data.XSens_Acceleration_XSens_accX(start:stop),100)/9.81; % pltData.acc_lat_g = movmean(data.XSens_Acceleration_XSens_accY(start:stop),100)/9.81; % Rate of turn % pltData.rot_roll_degps = movmean(data.XSens_RateOfTurn_XSens_gyrX(start:stop),100); % pltData.rot_pitch_degps = movmean(data.XSens_RateOfTurn_XSens_gyrY(start:stop),100); % pltData.rot_yaw_degps = movmean(data.XSens_RateOfTurn_XSens_gyrZ(start:stop),100); %% Inverters % inverter temperatures pltData.invL_temp = data.INV_L_TxPDO_1_T_Inv_L(start:stop); pltData.invR_temp = data.INV_R_TxPDO_1_T_Inv_R(start:stop); % motor temperatures pltData.motL_temp = data.INV_L_TxPDO_1_T_Mot_L(start:stop); pltData.motR_temp = data.INV_R_TxPDO_1_T_Mot_R(start:stop); % motor velocities pltData.motL_vel_rpm = 60*data.INV_L_TxPDO_4_Velocity_L(start:stop); pltData.motR_vel_rpm = 60*data.INV_R_TxPDO_4_Velocity_R(start:stop); % inverter torque demand pltData.invL_torqueDemand = data.INV_L_TxPDO_3_DemandedTorque_L(start:stop)/10; % /10 to match autobox torque pltData.invR_torqueDemand = data.INV_R_TxPDO_3_DemandedTorque_R(start:stop)/10; % inverter actual torque pltData.invL_torqueActual = data.INV_L_TxPDO_3_ActualTorque_L(start:stop)/10; pltData.invR_torqueActual = data.INV_R_TxPDO_3_ActualTorque_R(start:stop)/10; %% Wheelspeed %% Statistics: power_regen_kw = pltData.ams_ptot; power_regen_kw(power_regen_kw > 0) = 0; power_used_kw = pltData.ams_ptot; power_used_kw(power_used_kw < 0) = 0; pltData.energy_kwh = trapz(pltData.time_s, pltData.ams_ptot)/3600; pltData.energy_regen_kwh = trapz(pltData.time_s, power_regen_kw)/3600; pltData.energy_used_kwh = trapz(pltData.time_s, power_used_kw)/3600; pltData.distanceTotal_km = trapz(pltData.time_s, pltData.speed_kph./3.6)/1000; % 1/3.6 for km/h to m/s and /1000 for km output pltData.peakPower_kw = max(pltData.ams_ptot); pltData.peakPowerMean_kw = max(movmean(pltData.ams_ptot,500)); pltData.maxSpeed_kph = max(pltData.speed_kph); pltData.startTime = time_hms(start); pltData.stopTime = time_hms(stop); end