Master_Interface/Core/Src/CAN_Communication.c

336 lines
12 KiB
C

/*
* CAN_Communication.c
*
* Created on: Apr 26, 2022
* Author: max
*/
#include "CAN_Communication.h"
#include "SPI_Communication.h"
#include "SoC_Estimation.h"
#include "stm32g4xx_hal_fdcan.h"
#include <string.h>
canFrame framebuffer[CANFRAMEBUFFERSIZE] = {0};
uint8_t framebufferwritepointer;
uint8_t framebufferreadpointer;
int32_t shuntcurrent = 0;
int32_t shuntvoltage1 = 0;
int32_t shuntvoltage2 = 0;
int32_t shuntvoltage3 = 0;
int32_t shuntbusbartemp = 0;
int32_t shuntpower = 0;
int32_t shuntampereseconds = 0;
int32_t shuntenergy = 0;
uint32_t shuntlastmessage = 0;
uint8_t currentlap = 0;
uint8_t TSTargetState = 0;
void CAN_Init(FDCAN_HandleTypeDef* hcan) {
HAL_FDCAN_Stop(hcan);
framebufferreadpointer = 0;
framebufferwritepointer = 0;
FDCAN_FilterTypeDef fdfilter = {0};
fdfilter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
fdfilter.FilterID1 = 0x000; // Range start
fdfilter.FilterID2 = 0x000; // Range stop
fdfilter.FilterIndex = 0;
fdfilter.FilterType = FDCAN_FILTER_MASK;
fdfilter.IdType = FDCAN_STANDARD_ID;
HAL_FDCAN_ConfigFilter(hcan, &fdfilter);
HAL_FDCAN_Start(hcan);
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
// hcan->Instance->CCCR |= FDCAN_CCCR_ASM;
}
uint8_t CAN_Receive(FDCAN_HandleTypeDef* hcan) {
uint32_t ecount = hcan->Instance->ECR;
while (framebufferreadpointer != framebufferwritepointer) {
framebufferreadpointer++;
if (framebufferreadpointer >= CANFRAMEBUFFERSIZE) {
framebufferreadpointer = 0;
}
canFrame rxFrame = framebuffer[framebufferreadpointer];
switch (rxFrame.FrameID) {
case SHUNT_CURRENT:
shuntcurrent = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_1:
shuntvoltage1 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_2:
shuntvoltage2 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_3:
shuntvoltage3 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_BUSBAR_TEMP:
shuntbusbartemp = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_POWER:
shuntpower = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_ENERGY:
shuntenergy = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_AMPERE_SECONDS:
shuntampereseconds = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case CHARGER_START_CHARGING:
TSTargetState = TS_CHARGING;
break;
case AUTOBOX_INFO:
currentlap = rxFrame.data[0] >> 2;
TSTargetState = rxFrame.data[0] & 0x01;
break;
}
}
return 0;
}
uint8_t CAN_Transmit(FDCAN_HandleTypeDef* hcan, uint16_t frameid,
uint8_t* buffer, uint8_t datalen) {
FDCAN_TxHeaderTypeDef txheader = {0};
txheader.Identifier = frameid;
txheader.IdType = FDCAN_STANDARD_ID;
txheader.TxFrameType = FDCAN_DATA_FRAME;
txheader.DataLength = ((uint32_t)datalen) << 16;
txheader.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
txheader.BitRateSwitch = FDCAN_BRS_OFF;
txheader.FDFormat = FDCAN_CLASSIC_CAN;
txheader.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
txheader.MessageMarker = 0;
if (HAL_FDCAN_GetTxFifoFreeLevel(hcan) > 0) {
HAL_FDCAN_AddMessageToTxFifoQ(hcan, &txheader, buffer);
return 0;
}
return 1;
}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef* handle,
uint32_t interrupt_flags) {
FDCAN_RxHeaderTypeDef rxFrameHeader;
uint8_t data[8];
framebufferwritepointer++;
if (framebufferwritepointer >= CANFRAMEBUFFERSIZE) {
framebufferwritepointer = 0;
}
if (!(interrupt_flags & FDCAN_IT_RX_FIFO0_NEW_MESSAGE)) {
return;
}
if (HAL_FDCAN_GetRxMessage(handle, FDCAN_RX_FIFO0, &rxFrameHeader, data) !=
HAL_OK) {
framebuffer[framebufferwritepointer].error = 1;
} else {
framebuffer[framebufferwritepointer].error = 0;
}
if (rxFrameHeader.IdType != FDCAN_STANDARD_ID) {
return;
}
framebuffer[framebufferwritepointer].FrameID =
(int16_t)(rxFrameHeader.Identifier);
framebuffer[framebufferwritepointer].length =
(uint8_t)(rxFrameHeader.DataLength >> 16);
for (int i = 0; i < framebuffer[framebufferwritepointer].length; i++) {
framebuffer[framebufferwritepointer].data[i] = data[i];
}
framebuffer[framebufferwritepointer].timestamp = HAL_GetTick();
}
void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef* hcan) {}
void CAN_SendAbxStatus(FDCAN_HandleTypeDef* hcan) {
uint8_t buffer[4];
buffer[0] = ctrltsstate.currentTSState | (1 << 7);
buffer[1] = current_soc;
buffer[2] = (uint8_t)(min_voltage >> 8);
buffer[3] = (int8_t)(max_temp >> 4);
CAN_Transmit(hcan, AMS_STATUS_ID, buffer, 4);
}
void CAN_SendAMSPanic(FDCAN_HandleTypeDef* hcan, ErrorFlagHandler* errorflags) {
uint8_t buffer[8];
buffer[0] = errorflags->errorcode;
memcpy(&buffer[1], errorflags->errorargs, 7);
CAN_Transmit(hcan, AMS_PANIC_ID, buffer, 8);
}
uint8_t slavelognum = 0;
uint8_t framelognum = 0;
void CAN_SendLoggingFrame(FDCAN_HandleTypeDef* hcan) {
uint8_t buffer[8];
for (int i = 0; i < AMS_LOGGING_FRAMES_PER_LOOP; i++) {
buffer[0] = ((slavelognum << 4) | framelognum);
switch (framelognum) {
case 0:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellVoltages[0],
BATTERY_VOLTAGE_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellVoltages[1],
BATTERY_VOLTAGE_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellVoltages[2],
BATTERY_VOLTAGE_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellVoltages[3],
BATTERY_VOLTAGE_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellVoltages[4],
BATTERY_VOLTAGE_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellVoltages[5],
BATTERY_VOLTAGE_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellVoltages[6],
BATTERY_VOLTAGE_TYPE);
break;
case 1:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellVoltages[7],
BATTERY_VOLTAGE_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellVoltages[8],
BATTERY_VOLTAGE_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellVoltages[9],
BATTERY_VOLTAGE_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[0],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[1],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[2],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[3],
BATTERY_TEMP_TYPE);
break;
case 2:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[4],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[5],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[6],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[7],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[8],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[9],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[10],
BATTERY_TEMP_TYPE);
break;
case 3:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[11],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[12],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[13],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[14],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[15],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[16],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[17],
BATTERY_TEMP_TYPE);
break;
case 4:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[18],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[19],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[20],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[21],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[22],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[23],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[24],
BATTERY_TEMP_TYPE);
break;
case 5:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[25],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[26],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[27],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[28],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[29],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[30],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[31],
BATTERY_TEMP_TYPE);
break;
}
CAN_Transmit(hcan, AMS_LOGGING_ID, buffer, 8);
framelognum++;
if ((framelognum >= AMS_LOGGING_NUM_FRAMES)) {
framelognum = 0;
slavelognum++;
}
if ((slavelognum >= NUMBEROFSLAVES)) {
slavelognum = 0;
framelognum = 0;
}
}
}
uint8_t CAN_convert_logval(uint16_t value, uint8_t type) {
if (type == BATTERY_VOLTAGE_TYPE) {
return value >> 8;
} else if (type == BATTERY_TEMP_TYPE) {
return value >> 4;
}
}