Initial commit

This commit is contained in:
jazzpi
2022-07-03 17:33:09 +02:00
commit b1c21a981c
139 changed files with 128146 additions and 0 deletions

View File

@ -0,0 +1,333 @@
/*
* CAN_Communication.c
*
* Created on: Apr 26, 2022
* Author: max
*/
#include "CAN_Communication.h"
#include "stm32g4xx_hal_fdcan.h"
canFrame framebuffer[CANFRAMEBUFFERSIZE] = {0};
uint8_t framebufferwritepointer;
uint8_t framebufferreadpointer;
int32_t shuntcurrent = 0;
int32_t shuntvoltage1 = 0;
int32_t shuntvoltage2 = 0;
int32_t shuntvoltage3 = 0;
int32_t shuntbusbartemp = 0;
int32_t shuntpower = 0;
int32_t shuntampereseconds = 0;
int32_t shuntenergy = 0;
uint32_t shuntlastmessage = 0;
uint8_t currentlap = 0;
uint8_t TSTargetState = 0;
void CAN_Init(FDCAN_HandleTypeDef* hcan) {
HAL_FDCAN_Stop(hcan);
framebufferreadpointer = 0;
framebufferwritepointer = 0;
FDCAN_FilterTypeDef fdfilter = {0};
fdfilter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
fdfilter.FilterID1 = 0x000; // Range start
fdfilter.FilterID2 = 0x000; // Range stop
fdfilter.FilterIndex = 0;
fdfilter.FilterType = FDCAN_FILTER_MASK;
fdfilter.IdType = FDCAN_STANDARD_ID;
HAL_FDCAN_ConfigFilter(hcan, &fdfilter);
HAL_FDCAN_Start(hcan);
HAL_FDCAN_ActivateNotification(hcan, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0);
// hcan->Instance->CCCR |= FDCAN_CCCR_ASM;
}
uint8_t CAN_Receive(FDCAN_HandleTypeDef* hcan) {
uint32_t ecount = hcan->Instance->ECR;
while (framebufferreadpointer != framebufferwritepointer) {
framebufferreadpointer++;
if (framebufferreadpointer >= CANFRAMEBUFFERSIZE) {
framebufferreadpointer = 0;
}
canFrame rxFrame = framebuffer[framebufferreadpointer];
switch (rxFrame.FrameID) {
case SHUNT_CURRENT:
shuntcurrent = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_1:
shuntvoltage1 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_2:
shuntvoltage2 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_VOLTAGE_3:
shuntvoltage3 = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_BUSBAR_TEMP:
shuntbusbartemp = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_POWER:
shuntpower = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_ENERGY:
shuntenergy = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case SHUNT_AMPERE_SECONDS:
shuntampereseconds = (rxFrame.data[2] << 24) | (rxFrame.data[3] << 16) |
(rxFrame.data[4] << 8) | (rxFrame.data[5]);
shuntlastmessage = framebuffer[framebufferreadpointer].timestamp;
break;
case AUTOBOX_INFO:
currentlap = rxFrame.data[0] >> 2;
TSTargetState = rxFrame.data[0] & 0x01;
break;
}
}
return 0;
}
uint8_t CAN_Transmit(FDCAN_HandleTypeDef* hcan, uint16_t frameid,
uint8_t* buffer, uint8_t datalen) {
FDCAN_TxHeaderTypeDef txheader = {0};
txheader.Identifier = frameid;
txheader.IdType = FDCAN_STANDARD_ID;
txheader.TxFrameType = FDCAN_FRAME_CLASSIC;
txheader.DataLength = ((uint32_t)datalen) << 16;
txheader.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
txheader.BitRateSwitch = FDCAN_BRS_OFF;
txheader.FDFormat = FDCAN_CLASSIC_CAN;
txheader.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
txheader.MessageMarker = 0;
if (HAL_FDCAN_GetTxFifoFreeLevel(hcan) > 0) {
HAL_FDCAN_AddMessageToTxFifoQ(hcan, &txheader, buffer);
return 0;
}
return 1;
}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef* handle,
uint32_t interrupt_flags) {
FDCAN_RxHeaderTypeDef rxFrameHeader;
uint8_t data[8];
framebufferwritepointer++;
if (framebufferwritepointer >= CANFRAMEBUFFERSIZE) {
framebufferwritepointer = 0;
}
if (!(interrupt_flags & FDCAN_IT_RX_FIFO0_NEW_MESSAGE)) {
return;
}
if (HAL_FDCAN_GetRxMessage(handle, FDCAN_RX_FIFO0, &rxFrameHeader, data) !=
HAL_OK) {
framebuffer[framebufferwritepointer].error = 1;
} else {
framebuffer[framebufferwritepointer].error = 0;
}
if (rxFrameHeader.IdType != FDCAN_STANDARD_ID) {
return;
}
framebuffer[framebufferwritepointer].FrameID =
(int16_t)(rxFrameHeader.Identifier);
framebuffer[framebufferwritepointer].length =
(uint8_t)(rxFrameHeader.DataLength >> 16);
for (int i = 0; i < framebuffer[framebufferwritepointer].length; i++) {
framebuffer[framebufferwritepointer].data[i] = data[i];
}
framebuffer[framebufferwritepointer].timestamp = HAL_GetTick();
}
void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef* hcan) {}
void CAN_SendAbxStatus(FDCAN_HandleTypeDef* hcan) {
uint8_t buffer[4];
buffer[0] = ctrltsstate.currentTSState | (1 << 7);
buffer[1] = 160;
buffer[2] = (uint8_t)(shuntvoltage1 / 2000);
buffer[3] = 240;
CAN_Transmit(hcan, AMS_STATUS_ID, buffer, 4);
}
void CAN_SendAMSPanic(FDCAN_HandleTypeDef* hcan) {
uint8_t buffer[8];
buffer[0] = errorflags.errorcode;
buffer[1] = errorflags.errorargs[0];
buffer[2] = 0;
buffer[3] = 0;
buffer[4] = 0;
buffer[5] = 0;
buffer[6] = 0;
buffer[7] = 0;
CAN_Transmit(hcan, AMS_PANIC_ID, buffer, 8);
}
uint8_t slavelognum = 0;
uint8_t framelognum = 0;
void CAN_SendLoggingFrame(FDCAN_HandleTypeDef* hcan) {
uint8_t buffer[8];
buffer[0] = ((slavelognum << 4) | framelognum);
framelognum++;
if ((framelognum > 6)) {
framelognum = 0;
slavelognum++;
}
if ((slavelognum > NUMBEROFSLAVES)) {
slavelognum = 0;
framelognum = 0;
}
switch (framelognum) {
case 0:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellVoltages[0],
BATTERY_VOLTAGE_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellVoltages[1],
BATTERY_VOLTAGE_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellVoltages[2],
BATTERY_VOLTAGE_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellVoltages[3],
BATTERY_VOLTAGE_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellVoltages[4],
BATTERY_VOLTAGE_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellVoltages[5],
BATTERY_VOLTAGE_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellVoltages[6],
BATTERY_VOLTAGE_TYPE);
break;
case 1:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellVoltages[7],
BATTERY_VOLTAGE_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellVoltages[8],
BATTERY_VOLTAGE_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellVoltages[9],
BATTERY_VOLTAGE_TYPE);
buffer[4] =
CAN_convert_logval(slaves[slavelognum].cellTemps[0], BATTERY_TEMP_TYPE);
buffer[5] =
CAN_convert_logval(slaves[slavelognum].cellTemps[1], BATTERY_TEMP_TYPE);
buffer[6] =
CAN_convert_logval(slaves[slavelognum].cellTemps[2], BATTERY_TEMP_TYPE);
buffer[7] =
CAN_convert_logval(slaves[slavelognum].cellTemps[3], BATTERY_TEMP_TYPE);
break;
case 2:
buffer[1] =
CAN_convert_logval(slaves[slavelognum].cellTemps[4], BATTERY_TEMP_TYPE);
buffer[2] =
CAN_convert_logval(slaves[slavelognum].cellTemps[5], BATTERY_TEMP_TYPE);
buffer[3] =
CAN_convert_logval(slaves[slavelognum].cellTemps[6], BATTERY_TEMP_TYPE);
buffer[4] =
CAN_convert_logval(slaves[slavelognum].cellTemps[7], BATTERY_TEMP_TYPE);
buffer[5] =
CAN_convert_logval(slaves[slavelognum].cellTemps[8], BATTERY_TEMP_TYPE);
buffer[6] =
CAN_convert_logval(slaves[slavelognum].cellTemps[9], BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[10],
BATTERY_TEMP_TYPE);
break;
case 3:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[11],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[12],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[13],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[14],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[15],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[16],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[17],
BATTERY_TEMP_TYPE);
break;
case 4:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[18],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[19],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[20],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[21],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[22],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[23],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[24],
BATTERY_TEMP_TYPE);
break;
case 5:
buffer[1] = CAN_convert_logval(slaves[slavelognum].cellTemps[25],
BATTERY_TEMP_TYPE);
buffer[2] = CAN_convert_logval(slaves[slavelognum].cellTemps[26],
BATTERY_TEMP_TYPE);
buffer[3] = CAN_convert_logval(slaves[slavelognum].cellTemps[27],
BATTERY_TEMP_TYPE);
buffer[4] = CAN_convert_logval(slaves[slavelognum].cellTemps[28],
BATTERY_TEMP_TYPE);
buffer[5] = CAN_convert_logval(slaves[slavelognum].cellTemps[29],
BATTERY_TEMP_TYPE);
buffer[6] = CAN_convert_logval(slaves[slavelognum].cellTemps[30],
BATTERY_TEMP_TYPE);
buffer[7] = CAN_convert_logval(slaves[slavelognum].cellTemps[31],
BATTERY_TEMP_TYPE);
break;
}
CAN_Transmit(hcan, AMS_LOGGING_ID, buffer, 8);
}
uint8_t CAN_convert_logval(uint16_t value, uint8_t type) {
if (type == BATTERY_VOLTAGE_TYPE) {
return (uint8_t)value >> 8;
} else if (type == BATTERY_TEMP_TYPE) {
return (uint8_t)value >> 4;
}
}

View File

@ -0,0 +1,24 @@
/*
* Check_Shunt_Limits.c
*
* Created on: Jun 16, 2022
* Author: max
*/
#include "Check_Shunt_Limits.h"
void CheckShuntLimits() {
uint32_t tick = HAL_GetTick();
if (((shuntlastmessage + SHUNT_TIMEOUT) < HAL_GetTick()) &&
(HAL_GetTick() > 2000)) {
AMS_Error_Handler(0x06);
}
/*if(shuntcurrent > SHUNT_OVERCURRENT)
{
AMS_Error_Handler(0x07);
}
if(shuntbusbartemp > SHUNT_OVERTEMP)
{
AMS_Error_Handler(0x08);
}*/
}

18
Core/Src/Fan_Control.c Normal file
View File

@ -0,0 +1,18 @@
/*
* Fan_Control.c
*
* Created on: Jun 23, 2022
* Author: max
*/
#include "Fan_Control.h"
TIM_HandleTypeDef* fan_pwm_timer;
void Temp_Ctrl_Init(TIM_HandleTypeDef* htim) {
fan_pwm_timer = htim;
fan_pwm_timer->Instance->CCR4 = 0;
HAL_TIM_PWM_Start(fan_pwm_timer, TIM_CHANNEL_4);
}
void Temp_Ctrl_Loop() { fan_pwm_timer->Instance->CCR4 = 65000; }

310
Core/Src/SD_SPI_Driver.c Normal file
View File

@ -0,0 +1,310 @@
/*
* SD_SPI_Driver.c
*
* Created on: 20.06.2022
* Author: max
*/
#include "SD_SPI_Driver.h"
#define SPI_TIMEOUT 1000
// TODO: Why is this defined twice?
extern SPI_HandleTypeDef* sdspi;
void SD_SPI_Driver_Init(SPI_HandleTypeDef* hspi) { sdspi = hspi; }
uint8_t SPI_SD_Init(BYTE pdrv) {
uint8_t resbuf[5] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
SD_Power_Up_Seq();
HAL_Delay(10);
SD_setIdleState();
SD_send_if_condition(resbuf);
SD_read_OCR(resbuf);
uint8_t result = 0xFF;
while (result != 0x00) {
SD_sendAppCMD();
result = SD_sendOpCond();
}
SD_read_OCR(resbuf);
}
uint8_t SPI_SD_Status(BYTE pdrv) {}
uint8_t SPI_SD_Write(BYTE pdrv, const BYTE* buff, DWORD sector, UINT count) {}
uint8_t SPI_SD_Read(BYTE pdrv, BYTE* buff, DWORD sector, UINT count) {}
uint8_t SD_Blockread(uint8_t* buff, uint32_t sector) {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = CMD17;
cmd.arg1 = (uint8_t)(sector >> 24) & 0xFF;
cmd.arg2 = (uint8_t)(sector >> 16) & 0xFF;
cmd.arg3 = (uint8_t)(sector >> 8) & 0xFF;
cmd.arg4 = (uint8_t)sector & 0xFF;
cmd.crc = 0x00;
SD_SPI_Send_Command(cmd);
uint8_t sdstatus = SD_PollForResponseR1();
uint8_t resp = 0xFF;
while (resp != 0xFE) {
HAL_SPI_Receive(sdspi, &resp, 1, SPI_TIMEOUT);
}
HAL_SPI_Receive(sdspi, buff, BLOCKSIZE, 200);
uint8_t crc[2];
// HAL_SPI_Receive(sdspi, crc, 2, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
}
uint8_t SD_Blockwrite(uint8_t* buf, uint32_t sector) {
uint8_t dummybuffer = 0xFF;
uint8_t starttoken = 0xFE;
uint8_t crc[2] = {0};
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = CMD24;
cmd.arg1 = (uint8_t)(sector >> 24) & 0xFF;
cmd.arg2 = (uint8_t)(sector >> 16) & 0xFF;
cmd.arg3 = (uint8_t)(sector >> 8) & 0xFF;
cmd.arg4 = (uint8_t)sector & 0xFF;
cmd.crc = 0x00;
SD_SPI_Send_Command(cmd);
uint8_t sdstatus = SD_PollForResponseR1();
HAL_SPI_Transmit(sdspi, &starttoken, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, buf, BLOCKSIZE, SPI_TIMEOUT);
// HAL_SPI_Transmit(sdspi, crc,2,SPI_TIMEOUT);
uint8_t responsetoken = 0xFF;
for (int i = 0; i < 128; i++) {
HAL_SPI_Receive(sdspi, &responsetoken, 1, SPI_TIMEOUT);
if (responsetoken != 0xFF) {
break;
}
}
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
}
uint8_t SD_setIdleState() {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = 0x40;
cmd.arg1 = 0;
cmd.arg2 = 0;
cmd.arg3 = 0;
cmd.arg4 = 0;
cmd.crc = 0x94 | 0x01;
SD_SPI_Send_Command(cmd);
uint8_t sdstatus = SD_PollForResponseR1();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
return sdstatus;
}
void SD_Power_Up_Seq() {
SD_CS_High();
uint8_t dummybuf[10] = {0xFF};
for (int i = 0; i < 10; i++) {
dummybuf[i] = 0xFF;
}
HAL_SPI_Transmit(sdspi, dummybuf, 10, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, dummybuf, 1, SPI_TIMEOUT);
}
void SD_CS_Low() {
HAL_GPIO_WritePin(SD_Select_GPIO_Port, SD_Select_Pin, GPIO_PIN_RESET);
}
void SD_CS_High() {
HAL_GPIO_WritePin(SD_Select_GPIO_Port, SD_Select_Pin, GPIO_PIN_SET);
}
HAL_StatusTypeDef SD_SPI_Send_Command(SD_Command cmd) {
uint8_t sdspirxbuf[6] = {0};
uint8_t sdspitxbuf[6] = {0};
sdspitxbuf[0] = cmd.command;
sdspitxbuf[1] = cmd.arg1;
sdspitxbuf[2] = cmd.arg2;
sdspitxbuf[3] = cmd.arg3;
sdspitxbuf[4] = cmd.arg4;
sdspitxbuf[5] = cmd.crc;
return HAL_SPI_TransmitReceive(sdspi, sdspitxbuf, sdspirxbuf, 6, SPI_TIMEOUT);
}
uint8_t SD_PollForResponseR1() {
/* uint8_t rxbuf[8] = {0};
uint8_t txbuf[8];
for(int i = 0;i<8;i++)
{
txbuf[i] = 0xFF;
}
HAL_SPI_TransmitReceive(sdspi, txbuf ,rxbuf, 8, SPI_TIMEOUT);
for(uint8_t i = 0; i<8;i++)
{
if((rxbuf[i] & 0x80) == 0x00)
{
return rxbuf[i];
}
}*/
uint8_t res = 0xFF;
uint8_t dummytx = 0xFF;
for (int i = 0; i < 8; i++) {
HAL_Delay(1);
HAL_SPI_TransmitReceive(sdspi, &dummytx, &res, 1, SPI_TIMEOUT);
if ((res & 0x80) == 0) {
return res;
}
}
return 0;
}
uint8_t SD_PollForResponseR7(uint8_t* resultbuf) {
uint8_t rxbuf;
for (uint8_t i = 0; i < 8; i++) {
HAL_SPI_Receive(sdspi, &rxbuf, 1, SPI_TIMEOUT);
if (rxbuf != 0xFF) {
resultbuf[0] = rxbuf;
HAL_SPI_Receive(sdspi, &resultbuf[1], 4, SPI_TIMEOUT);
return 0;
}
}
return 1;
}
void SD_send_if_condition(uint8_t* resbuf) {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = CMD8;
cmd.arg1 = 0;
cmd.arg2 = 0;
cmd.arg3 = 0x01;
cmd.arg4 = 0xAA;
cmd.crc = CMD8_CRC;
SD_SPI_Send_Command(cmd);
if (!SD_PollForResponseR7(resbuf)) {
}
HAL_SPI_Transmit(sdspi, &dummybuffer, 10, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
}
void SD_read_OCR(uint8_t* resbuf) {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = CMD58;
cmd.arg1 = 0;
cmd.arg2 = 0;
cmd.arg3 = 0x00;
cmd.arg4 = 0x00;
cmd.crc = 0x00;
SD_SPI_Send_Command(cmd);
if (!SD_PollForResponseR7(resbuf)) {
}
HAL_SPI_Transmit(sdspi, &dummybuffer, 10, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
}
uint8_t SD_sendAppCMD() {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = CMD55;
cmd.arg1 = 0;
cmd.arg2 = 0;
cmd.arg3 = 0;
cmd.arg4 = 0;
cmd.crc = 0x00;
SD_SPI_Send_Command(cmd);
uint8_t sdstatus = SD_PollForResponseR1();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
return sdstatus;
}
uint8_t SD_sendOpCond() {
uint8_t dummybuffer = 0xFF;
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_Low();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_Command cmd;
cmd.command = ACMD41;
cmd.arg1 = 0x40;
cmd.arg2 = 0;
cmd.arg3 = 0;
cmd.arg4 = 0;
cmd.crc = 0x00;
SD_SPI_Send_Command(cmd);
uint8_t sdstatus = SD_PollForResponseR1();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
SD_CS_High();
HAL_SPI_Transmit(sdspi, &dummybuffer, 1, SPI_TIMEOUT);
return sdstatus;
}

View File

@ -0,0 +1,314 @@
/*
* SPI_Communication.c
*
* Created on: Jun 16, 2022
* Author: max
*/
#include "SPI_Communication.h"
#include "stm32g4xx_hal.h"
#include "stm32g4xx_hal_spi.h"
#define GET_ERROR_RESPONSE_LEN 14
#define GET_TS_STATE_RESPONSE_LEN 23
static volatile int spi_transfer_state = 0;
uint8_t spitxbuf[1024];
uint8_t spirxbuf[1024];
SlaveHandler slaves[NUMBEROFSLAVES] = {0};
ErrorFlagHandler errorflags = {0};
TSHandler ctrltsstate = {0};
uint8_t spibusy = 0;
uint8_t actualTSState = 0;
SPI_HandleTypeDef* stmspi;
void InitSPI(SPI_HandleTypeDef* spi) {
stmspi = spi;
// HAL_SPI_DeInit(spi);
}
// uint8_t transmittoSlave(uint16_t length) {
// if (length > 1024)
// return 0xFE;
// if (waitforSlave() == 0) {
// HAL_StatusTypeDef status = HAL_SPI_Transmit(stmspi, spitxbuf, length,
// 10); return (uint8_t)status;
// }
// return 0xFF;
// }
// uint8_t receivefromSlave(uint16_t length) {
// if (length > 1024)
// return 0xFE;
// if (waitforSlave() == 0) {
// HAL_StatusTypeDef status = HAL_SPI_Receive(stmspi, spirxbuf, length, 10);
// return (uint8_t)status;
// }
// return 0xFF;
// }
// uint8_t slaveSendCommand(uint8_t command) {
// if (HAL_GPIO_ReadPin(InterSTM_IRQ_Line_GPIO_Port, InterSTM_IRQ_Line_Pin) ==
// 0x01)
// return 1;
// HAL_SPI_Transmit(stmspi, &command, 1, 10);
// return 0;
// }
// void sendShuntdata() {
// if (slaveSendCommand(SEND_SHUNTDATA) == 0) {
// spitxbuf[0] = (uint8_t)(shuntvoltage3 >> 24) & 0xFF;
// spitxbuf[1] = (uint8_t)(shuntvoltage3 >> 16) & 0xFF;
// spitxbuf[2] = (uint8_t)(shuntvoltage3 >> 8) & 0xFF;
// spitxbuf[3] = (uint8_t)(shuntvoltage3)&0xFF;
// spitxbuf[4] = (uint8_t)(shuntvoltage2 >> 24) & 0xFF;
// spitxbuf[5] = (uint8_t)(shuntvoltage2 >> 16) & 0xFF;
// spitxbuf[6] = (uint8_t)(shuntvoltage2 >> 8) & 0xFF;
// spitxbuf[7] = (uint8_t)(shuntvoltage2)&0xFF;
// spitxbuf[8] = (uint8_t)(shuntcurrent >> 24) & 0xFF;
// spitxbuf[9] = (uint8_t)(shuntcurrent >> 16) & 0xFF;
// spitxbuf[10] = (uint8_t)(shuntcurrent >> 8) & 0xFF;
// spitxbuf[11] = (uint8_t)(shuntcurrent)&0xFF;
// transmittoSlave(12);
// }
// }
// void sendTSstate(uint8_t targetstate) {
// if (slaveSendCommand(SET_TSSTATE) == 0) {
// spitxbuf[0] = targetstate;
// transmittoSlave(1);
// }
// }
// void getTSstate() {
// if (slaveSendCommand(GET_TSSTATE)) {
// if (receivefromSlave(20) == HAL_OK) {
// ctrltsstate.currentTSState = spirxbuf[0];
// ctrltsstate.targetTSState = spirxbuf[1];
// ctrltsstate.relaisSupplyVoltage = spirxbuf[2] << 8 | spirxbuf[3];
// ctrltsstate.shutdownCircuitVoltage = spirxbuf[4] << 8 | spirxbuf[5];
// ctrltsstate.negativeAIRCurrent = spirxbuf[6] << 8 | spirxbuf[7];
// ctrltsstate.positiveAIRCurrent = spirxbuf[8] << 8 | spirxbuf[9];
// ctrltsstate.preChargeAIRCurrent = spirxbuf[10] << 8 | spirxbuf[11];
// ctrltsstate.CtrlBatteryVoltageBatterySide =
// (spirxbuf[12] << 24) | (spirxbuf[13] << 16) | (spirxbuf[14] << 8) |
// (spirxbuf[15]);
// ctrltsstate.CtrlBatteryVoltageVehicleSide =
// (spirxbuf[16] << 24) | (spirxbuf[17] << 16) | (spirxbuf[18] << 8) |
// (spirxbuf[19]);
// }
// }
// }
// void getError() {
// if (slaveSendCommand(GET_ERROR) == 0) {
// if (receivefromSlave(12) == HAL_OK) {
// errorflags.errorcode = spirxbuf[0];
// errorflags.errorargs[0] = spirxbuf[1];
// errorflags.errorargs[1] = spirxbuf[2];
// errorflags.errorargs[2] = spirxbuf[3];
// errorflags.errorargs[3] = spirxbuf[4];
// errorflags.errorargs[4] = spirxbuf[5];
// errorflags.errorargs[5] = spirxbuf[6];
// errorflags.errorargs[6] = spirxbuf[7];
// errorflags.errorargs[7] = spirxbuf[8];
// errorflags.AMS_ERROR_LED = (spirxbuf[9] >> 7) & 0x01;
// errorflags.IMD_ERROR_LED = (spirxbuf[9] >> 6) & 0x01;
// errorflags.IMD_ERROR = (spirxbuf[9] >> 5) & 0x01;
// errorflags.HV_Inactive = (spirxbuf[9] >> 4) & 0x01;
// errorflags.TS_no_voltage_error = (spirxbuf[9] >> 3) & 0x01;
// errorflags.negative_AIR_error = (spirxbuf[9] >> 2) & 0x01;
// errorflags.positive_AIR_or_PC_error = (spirxbuf[9] >> 1) & 0x01;
// errorflags.positive_AIR_and_PC_open = spirxbuf[9] & 0x01;
// errorflags.negative_AIR_open = spirxbuf[10] & 0x01;
// }
// }
// }
// void getMeasurements() {
// if (slaveSendCommand(GET_MEASUREMENTS) == 0) {
// if (receivefromSlave(NUMBEROFSLAVES * 89) == HAL_OK) {
// for (int n = 0; n < NUMBEROFSLAVES; n++) {
// slaves[n].slaveID = spirxbuf[n * 89];
// slaves[n].timestamp =
// (spirxbuf[n * 89 + 1] << 24) | (spirxbuf[n * 89 + 2] << 16) |
// (spirxbuf[n * 89 + 3] << 8) | (spirxbuf[n * 89 + 4]);
// for (int i = 0; i < NUMBEROFCELLS; i++) {
// slaves[n].cellVoltages[i] =
// ((uint16_t)spirxbuf[n * 89 + 5 + 2 * i] << 8) |
// spirxbuf[n * 89 + 6 + 2 * i];
// }
// for (int i = 0; i < NUMBEROFTEMPS; i++) {
// slaves[n].cellTemps[i] =
// ((uint16_t)spirxbuf[n * 89 + 25 + 2 * i] << 8) |
// spirxbuf[n * 89 + 26 + 2 * i];
// }
// }
// }
// }
// }
// void toggleSlaveStatusLED() { slaveSendCommand(TOGGLE_STATUS_LED); }
uint8_t waitforSlave() {
uint32_t starttime = HAL_GetTick();
while ((starttime + SLAVE_TIMEOUT) > HAL_GetTick()) {
if (HAL_GPIO_ReadPin(InterSTM_IRQ_Line_GPIO_Port, InterSTM_IRQ_Line_Pin) ==
GPIO_PIN_SET) {
return 0;
}
}
HAL_GPIO_WritePin(InterSTM_SPI_CS_GPIO_Port, InterSTM_SPI_CS_Pin,
GPIO_PIN_SET);
HAL_Delay(1);
HAL_GPIO_WritePin(InterSTM_SPI_CS_GPIO_Port, InterSTM_SPI_CS_Pin,
GPIO_PIN_RESET);
return 1;
}
void InterSTMFrame(uint8_t targettsstate) {
spitxbuf[0] = (uint8_t)(shuntvoltage3 >> 24) & 0xFF;
spitxbuf[1] = (uint8_t)(shuntvoltage3 >> 16) & 0xFF;
spitxbuf[2] = (uint8_t)(shuntvoltage3 >> 8) & 0xFF;
spitxbuf[3] = (uint8_t)(shuntvoltage3)&0xFF;
spitxbuf[4] = (uint8_t)(shuntvoltage2 >> 24) & 0xFF;
spitxbuf[5] = (uint8_t)(shuntvoltage2 >> 16) & 0xFF;
spitxbuf[6] = (uint8_t)(shuntvoltage2 >> 8) & 0xFF;
spitxbuf[7] = (uint8_t)(shuntvoltage2)&0xFF;
spitxbuf[8] = (uint8_t)(shuntcurrent >> 24) & 0xFF;
spitxbuf[9] = (uint8_t)(shuntcurrent >> 16) & 0xFF;
spitxbuf[10] = (uint8_t)(shuntcurrent >> 8) & 0xFF;
spitxbuf[11] = (uint8_t)(shuntcurrent)&0xFF;
spitxbuf[12] = targettsstate;
if (HAL_GPIO_ReadPin(InterSTM_IRQ_Line_GPIO_Port, InterSTM_IRQ_Line_Pin) ==
GPIO_PIN_SET) {
return;
}
uint8_t dummiebuf[4] = {0xFF, 0xFF, 0xFF, 0xFF};
HAL_SPI_Transmit(stmspi, dummiebuf, 4, 10);
// HAL_SPI_DeInit(stmspi);
// HAL_SPI_Init(stmspi);
HAL_SPIEx_FlushRxFifo(stmspi);
HAL_GPIO_WritePin(InterSTM_SPI_CS_GPIO_Port, InterSTM_SPI_CS_Pin,
GPIO_PIN_SET);
if (waitforSlave() != 0) {
return;
}
HAL_Delay(10);
spi_transfer_state = 0;
HAL_SPI_Transmit_IT(stmspi, spitxbuf, 13);
uint32_t timeout = HAL_GetTick() + 100;
while (spi_transfer_state == 0 && HAL_GetTick() < timeout) {
}
if (spi_transfer_state == 1) {
HAL_Delay(10);
HAL_SPI_Receive_IT(stmspi, spirxbuf, NUMBEROFSLAVES * 89 + 33);
timeout = HAL_GetTick() + 200;
while (spi_transfer_state == 1 && HAL_GetTick() < timeout) {
}
}
HAL_GPIO_WritePin(InterSTM_SPI_CS_GPIO_Port, InterSTM_SPI_CS_Pin,
GPIO_PIN_RESET);
if (spi_transfer_state != 2) {
return;
}
for (int n = 0; n < NUMBEROFSLAVES; n++) {
slaves[n].slaveID = spirxbuf[n * 89];
slaves[n].timestamp = (spirxbuf[n * 89 + 1] << 24) |
(spirxbuf[n * 89 + 2] << 16) |
(spirxbuf[n * 89 + 3] << 8) | (spirxbuf[n * 89 + 4]);
for (int i = 0; i < NUMBEROFCELLS; i++) {
slaves[n].cellVoltages[i] =
((uint16_t)spirxbuf[n * 89 + 5 + 2 * i] << 8) |
spirxbuf[n * 89 + 6 + 2 * i];
}
for (int i = 0; i < NUMBEROFTEMPS; i++) {
slaves[n].cellTemps[i] = ((uint16_t)spirxbuf[n * 89 + 25 + 2 * i] << 8) |
spirxbuf[n * 89 + 26 + 2 * i];
}
}
uint16_t errorflagbaseaddress = NUMBEROFSLAVES * 89 + 1;
errorflags.errorcode = spirxbuf[errorflagbaseaddress];
errorflags.errorargs[0] = spirxbuf[errorflagbaseaddress + 1];
errorflags.errorargs[1] = spirxbuf[errorflagbaseaddress + 2];
errorflags.errorargs[2] = spirxbuf[errorflagbaseaddress + 3];
errorflags.errorargs[3] = spirxbuf[errorflagbaseaddress + 4];
errorflags.errorargs[4] = spirxbuf[errorflagbaseaddress + 5];
errorflags.errorargs[5] = spirxbuf[errorflagbaseaddress + 6];
errorflags.errorargs[6] = spirxbuf[errorflagbaseaddress + 7];
errorflags.errorargs[7] = spirxbuf[errorflagbaseaddress + 8];
errorflags.AMS_ERROR_LED = (spirxbuf[errorflagbaseaddress + 9] >> 7) & 0x01;
errorflags.IMD_ERROR_LED = (spirxbuf[errorflagbaseaddress + 9] >> 6) & 0x01;
errorflags.IMD_ERROR = (spirxbuf[errorflagbaseaddress + 9] >> 5) & 0x01;
errorflags.HV_Inactive = (spirxbuf[errorflagbaseaddress + 9] >> 4) & 0x01;
errorflags.TS_no_voltage_error =
(spirxbuf[errorflagbaseaddress + 9] >> 3) & 0x01;
errorflags.negative_AIR_error =
(spirxbuf[errorflagbaseaddress + 9] >> 2) & 0x01;
errorflags.positive_AIR_or_PC_error =
(spirxbuf[errorflagbaseaddress + 9] >> 1) & 0x01;
errorflags.positive_AIR_and_PC_open =
spirxbuf[errorflagbaseaddress + 9] & 0x01;
errorflags.negative_AIR_open = spirxbuf[errorflagbaseaddress + 10] & 0x01;
uint16_t tsstatebaseaddress = errorflagbaseaddress + 12;
ctrltsstate.currentTSState = spirxbuf[tsstatebaseaddress + 0];
ctrltsstate.targetTSState = spirxbuf[tsstatebaseaddress + 1];
ctrltsstate.relaisSupplyVoltage =
spirxbuf[tsstatebaseaddress + 2] << 8 | spirxbuf[tsstatebaseaddress + 3];
ctrltsstate.shutdownCircuitVoltage =
spirxbuf[tsstatebaseaddress + 4] << 8 | spirxbuf[tsstatebaseaddress + 5];
ctrltsstate.negativeAIRCurrent =
spirxbuf[tsstatebaseaddress + 6] << 8 | spirxbuf[tsstatebaseaddress + 7];
ctrltsstate.positiveAIRCurrent =
spirxbuf[tsstatebaseaddress + 8] << 8 | spirxbuf[tsstatebaseaddress + 9];
ctrltsstate.preChargeAIRCurrent = spirxbuf[tsstatebaseaddress + 10] << 8 |
spirxbuf[tsstatebaseaddress + 11];
ctrltsstate.CtrlBatteryVoltageBatterySide =
(spirxbuf[tsstatebaseaddress + 12] << 24) |
(spirxbuf[tsstatebaseaddress + 13] << 16) |
(spirxbuf[tsstatebaseaddress + 14] << 8) |
(spirxbuf[tsstatebaseaddress + 15]);
ctrltsstate.CtrlBatteryVoltageVehicleSide =
(spirxbuf[tsstatebaseaddress + 16] << 24) |
(spirxbuf[tsstatebaseaddress + 17] << 16) |
(spirxbuf[tsstatebaseaddress + 18] << 8) |
(spirxbuf[tsstatebaseaddress + 19]);
}
uint8_t calculatechecksum(uint8_t* data, uint8_t datalen) {
uint8_t checksum = 0xFF;
for (int i = 0; i < datalen; i++) {
checksum ^= data[i];
}
return checksum;
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef* hspi) { spi_transfer_state = 1; }
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef* hspi) { spi_transfer_state = 2; }

10
Core/Src/USB_Shell.c Normal file
View File

@ -0,0 +1,10 @@
/*
* USB_Shell.c
*
* Created on: Jun 16, 2022
* Author: max
*/
#include "USB_Shell.h"
void USB_Shell_Event_Loop() {}

461
Core/Src/main.c Normal file
View File

@ -0,0 +1,461 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "app_fatfs.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "CAN_Communication.h"
#include "Check_Shunt_Limits.h"
#include "Fan_Control.h"
#include "SD_SPI_Driver.h"
#include "SPI_Communication.h"
#include "USB_Shell.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
FDCAN_HandleTypeDef hfdcan1;
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi3;
TIM_HandleTypeDef htim3;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_FDCAN1_Init(void);
static void MX_SPI1_Init(void);
static void MX_SPI3_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */
void setAMSError();
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void AMS_Error_Handler(uint8_t ErrorCode);
void Send_Can_Info_Frame(void);
void softTSAL(void);
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick.
*/
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_FDCAN1_Init();
MX_SPI1_Init();
MX_SPI3_Init();
MX_TIM3_Init();
if (MX_FATFS_Init() != APP_OK) {
Error_Handler();
}
MX_USB_Device_Init();
/* USER CODE BEGIN 2 */
// SD_SPI_Driver_Init(&hspi3);
// SPI_SD_Init(1);
HAL_GPIO_WritePin(Status_LED_GPIO_Port, Status_LED_Pin, GPIO_PIN_SET);
CAN_Init(&hfdcan1);
InitSPI(&hspi1);
Temp_Ctrl_Init(&htim3);
shuntvoltage1 = 0;
shuntvoltage2 = 0;
shuntcurrent = 0;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
uint32_t lastlap = 0;
uint32_t thislap = HAL_GetTick();
uint32_t laptime = 0;
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
lastlap = thislap;
thislap = HAL_GetTick();
laptime = HAL_GetTick() - lastlap;
CAN_Receive(&hfdcan1);
CAN_SendAbxStatus(&hfdcan1);
CheckShuntLimits();
CAN_SendLoggingFrame(&hfdcan1);
HAL_GPIO_TogglePin(Status_LED_GPIO_Port, Status_LED_Pin);
Temp_Ctrl_Loop();
softTSAL();
InterSTMFrame(TSTargetState);
HAL_Delay(10);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType =
RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief FDCAN1 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN1_Init(void) {
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.ClockDivider = FDCAN_CLOCK_DIV1;
hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan1.Init.AutoRetransmission = DISABLE;
hfdcan1.Init.TransmitPause = DISABLE;
hfdcan1.Init.ProtocolException = DISABLE;
hfdcan1.Init.NominalPrescaler = 2;
hfdcan1.Init.NominalSyncJumpWidth = 4;
hfdcan1.Init.NominalTimeSeg1 = 13;
hfdcan1.Init.NominalTimeSeg2 = 2;
hfdcan1.Init.DataPrescaler = 2;
hfdcan1.Init.DataSyncJumpWidth = 4;
hfdcan1.Init.DataTimeSeg1 = 13;
hfdcan1.Init.DataTimeSeg2 = 2;
hfdcan1.Init.StdFiltersNbr = 5;
hfdcan1.Init.ExtFiltersNbr = 0;
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN FDCAN1_Init 2 */
/* USER CODE END FDCAN1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void) {
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief SPI3 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI3_Init(void) {
/* USER CODE BEGIN SPI3_Init 0 */
/* USER CODE END SPI3_Init 0 */
/* USER CODE BEGIN SPI3_Init 1 */
/* USER CODE END SPI3_Init 1 */
/* SPI3 parameter configuration*/
hspi3.Instance = SPI3;
hspi3.Init.Mode = SPI_MODE_MASTER;
hspi3.Init.Direction = SPI_DIRECTION_2LINES;
hspi3.Init.DataSize = SPI_DATASIZE_8BIT;
hspi3.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi3.Init.CLKPhase = SPI_PHASE_2EDGE;
hspi3.Init.NSS = SPI_NSS_SOFT;
hspi3.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
hspi3.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi3.Init.TIMode = SPI_TIMODE_DISABLE;
hspi3.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi3.Init.CRCPolynomial = 7;
hspi3.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi3.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
if (HAL_SPI_Init(&hspi3) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN SPI3_Init 2 */
/* USER CODE END SPI3_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void) {
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, SD_Select_Pin | Status_LED_Pin | Soft_TSAL_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(InterSTM_SPI_CS_GPIO_Port, InterSTM_SPI_CS_Pin,
GPIO_PIN_RESET);
/*Configure GPIO pins : AMS_ERROR_Pin InterSTM_IRQ_Line_Pin */
GPIO_InitStruct.Pin = AMS_ERROR_Pin | InterSTM_IRQ_Line_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : SD_Select_Pin Status_LED_Pin Soft_TSAL_Pin */
GPIO_InitStruct.Pin = SD_Select_Pin | Status_LED_Pin | Soft_TSAL_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : InterSTM_SPI_CS_Pin */
GPIO_InitStruct.Pin = InterSTM_SPI_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(InterSTM_SPI_CS_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void AMS_Error_Handler(uint8_t ErrorCode) {
while (1) {
setAMSError();
CAN_SendAMSPanic(&hfdcan1);
CAN_Receive(&hfdcan1);
InterSTMFrame(TSTargetState);
}
}
void softTSAL() {
uint8_t tsoff_condition = errorflags.positive_AIR_and_PC_open &
errorflags.negative_AIR_open &
errorflags.HV_Inactive;
if (tsoff_condition) {
HAL_GPIO_WritePin(Soft_TSAL_GPIO_Port, Soft_TSAL_Pin,
GPIO_PIN_SET); // Turn LED On
} else {
HAL_GPIO_WritePin(Soft_TSAL_GPIO_Port, Soft_TSAL_Pin,
GPIO_PIN_RESET); // Turn LEF Off
}
}
void setAMSError() {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = AMS_ERROR_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(AMS_ERROR_GPIO_Port, &GPIO_InitStruct);
HAL_GPIO_WritePin(AMS_ERROR_GPIO_Port, AMS_ERROR_Pin, GPIO_PIN_RESET);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line) {
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line
number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file,
line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@ -0,0 +1,381 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g4xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
/* System interrupt init*/
/* MemoryManagement_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MemoryManagement_IRQn, 4, 0);
/* BusFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(BusFault_IRQn, 4, 0);
/* UsageFault_IRQn interrupt configuration */
HAL_NVIC_SetPriority(UsageFault_IRQn, 4, 0);
/* SVCall_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SVCall_IRQn, 4, 0);
/* DebugMonitor_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DebugMonitor_IRQn, 4, 0);
/* PendSV_IRQn interrupt configuration */
HAL_NVIC_SetPriority(PendSV_IRQn, 4, 0);
/** Disable the internal Pull-Up in Dead Battery pins of UCPD peripheral
*/
HAL_PWREx_DisableUCPDDeadBattery();
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/**
* @brief FDCAN MSP Initialization
* This function configures the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* hfdcan)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspInit 0 */
/* USER CODE END FDCAN1_MspInit 0 */
/** Initializes the peripherals clocks
*/
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/* Peripheral clock enable */
__HAL_RCC_FDCAN_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**FDCAN1 GPIO Configuration
PB8-BOOT0 ------> FDCAN1_RX
PB9 ------> FDCAN1_TX
*/
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* FDCAN1 interrupt Init */
HAL_NVIC_SetPriority(FDCAN1_IT0_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_SetPriority(FDCAN1_IT1_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspInit 1 */
/* USER CODE END FDCAN1_MspInit 1 */
}
}
/**
* @brief FDCAN MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hfdcan: FDCAN handle pointer
* @retval None
*/
void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* hfdcan)
{
if(hfdcan->Instance==FDCAN1)
{
/* USER CODE BEGIN FDCAN1_MspDeInit 0 */
/* USER CODE END FDCAN1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_FDCAN_CLK_DISABLE();
/**FDCAN1 GPIO Configuration
PB8-BOOT0 ------> FDCAN1_RX
PB9 ------> FDCAN1_TX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_8|GPIO_PIN_9);
/* FDCAN1 interrupt DeInit */
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
/* USER CODE BEGIN FDCAN1_MspDeInit 1 */
/* USER CODE END FDCAN1_MspDeInit 1 */
}
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspInit 0 */
/* USER CODE END SPI1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* SPI1 interrupt Init */
HAL_NVIC_SetPriority(SPI1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(SPI1_IRQn);
/* USER CODE BEGIN SPI1_MspInit 1 */
/* USER CODE END SPI1_MspInit 1 */
}
else if(hspi->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspInit 0 */
/* USER CODE END SPI3_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_SPI3_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**SPI3 GPIO Configuration
PB3 ------> SPI3_SCK
PB4 ------> SPI3_MISO
PB5 ------> SPI3_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* SPI3 interrupt Init */
HAL_NVIC_SetPriority(SPI3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(SPI3_IRQn);
/* USER CODE BEGIN SPI3_MspInit 1 */
/* USER CODE END SPI3_MspInit 1 */
}
}
/**
* @brief SPI MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
{
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspDeInit 0 */
/* USER CODE END SPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7);
/* SPI1 interrupt DeInit */
HAL_NVIC_DisableIRQ(SPI1_IRQn);
/* USER CODE BEGIN SPI1_MspDeInit 1 */
/* USER CODE END SPI1_MspDeInit 1 */
}
else if(hspi->Instance==SPI3)
{
/* USER CODE BEGIN SPI3_MspDeInit 0 */
/* USER CODE END SPI3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI3_CLK_DISABLE();
/**SPI3 GPIO Configuration
PB3 ------> SPI3_SCK
PB4 ------> SPI3_MISO
PB5 ------> SPI3_MOSI
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5);
/* SPI3 interrupt DeInit */
HAL_NVIC_DisableIRQ(SPI3_IRQn);
/* USER CODE BEGIN SPI3_MspDeInit 1 */
/* USER CODE END SPI3_MspDeInit 1 */
}
}
/**
* @brief TIM_PWM MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_pwm: TIM_PWM handle pointer
* @retval None
*/
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspInit 0 */
/* USER CODE END TIM3_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM3_CLK_ENABLE();
/* TIM3 interrupt Init */
HAL_NVIC_SetPriority(TIM3_IRQn, 4, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
/* USER CODE BEGIN TIM3_MspInit 1 */
/* USER CODE END TIM3_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* htim)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(htim->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspPostInit 0 */
/* USER CODE END TIM3_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM3 GPIO Configuration
PB1 ------> TIM3_CH4
*/
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN TIM3_MspPostInit 1 */
/* USER CODE END TIM3_MspPostInit 1 */
}
}
/**
* @brief TIM_PWM MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_pwm: TIM_PWM handle pointer
* @retval None
*/
void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef* htim_pwm)
{
if(htim_pwm->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspDeInit 0 */
/* USER CODE END TIM3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM3_CLK_DISABLE();
/* TIM3 interrupt DeInit */
HAL_NVIC_DisableIRQ(TIM3_IRQn);
/* USER CODE BEGIN TIM3_MspDeInit 1 */
/* USER CODE END TIM3_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

292
Core/Src/stm32g4xx_it.c Normal file
View File

@ -0,0 +1,292 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32g4xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32g4xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern PCD_HandleTypeDef hpcd_USB_FS;
extern FDCAN_HandleTypeDef hfdcan1;
extern SPI_HandleTypeDef hspi1;
extern SPI_HandleTypeDef hspi3;
extern TIM_HandleTypeDef htim3;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M4 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Prefetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32G4xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32g4xx.s). */
/******************************************************************************/
/**
* @brief This function handles USB low priority interrupt remap.
*/
void USB_LP_IRQHandler(void)
{
/* USER CODE BEGIN USB_LP_IRQn 0 */
/* USER CODE END USB_LP_IRQn 0 */
HAL_PCD_IRQHandler(&hpcd_USB_FS);
/* USER CODE BEGIN USB_LP_IRQn 1 */
/* USER CODE END USB_LP_IRQn 1 */
}
/**
* @brief This function handles FDCAN1 interrupt 0.
*/
void FDCAN1_IT0_IRQHandler(void)
{
/* USER CODE BEGIN FDCAN1_IT0_IRQn 0 */
/* USER CODE END FDCAN1_IT0_IRQn 0 */
HAL_FDCAN_IRQHandler(&hfdcan1);
/* USER CODE BEGIN FDCAN1_IT0_IRQn 1 */
/* USER CODE END FDCAN1_IT0_IRQn 1 */
}
/**
* @brief This function handles FDCAN1 interrupt 1.
*/
void FDCAN1_IT1_IRQHandler(void)
{
/* USER CODE BEGIN FDCAN1_IT1_IRQn 0 */
/* USER CODE END FDCAN1_IT1_IRQn 0 */
HAL_FDCAN_IRQHandler(&hfdcan1);
/* USER CODE BEGIN FDCAN1_IT1_IRQn 1 */
/* USER CODE END FDCAN1_IT1_IRQn 1 */
}
/**
* @brief This function handles TIM3 global interrupt.
*/
void TIM3_IRQHandler(void)
{
/* USER CODE BEGIN TIM3_IRQn 0 */
/* USER CODE END TIM3_IRQn 0 */
HAL_TIM_IRQHandler(&htim3);
/* USER CODE BEGIN TIM3_IRQn 1 */
/* USER CODE END TIM3_IRQn 1 */
}
/**
* @brief This function handles SPI1 global interrupt.
*/
void SPI1_IRQHandler(void)
{
/* USER CODE BEGIN SPI1_IRQn 0 */
/* USER CODE END SPI1_IRQn 0 */
HAL_SPI_IRQHandler(&hspi1);
/* USER CODE BEGIN SPI1_IRQn 1 */
/* USER CODE END SPI1_IRQn 1 */
}
/**
* @brief This function handles SPI3 global interrupt.
*/
void SPI3_IRQHandler(void)
{
/* USER CODE BEGIN SPI3_IRQn 0 */
/* USER CODE END SPI3_IRQn 0 */
HAL_SPI_IRQHandler(&hspi3);
/* USER CODE BEGIN SPI3_IRQn 1 */
/* USER CODE END SPI3_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */

156
Core/Src/syscalls.c Normal file
View File

@ -0,0 +1,156 @@
/**
******************************************************************************
* @file syscalls.c
* @author Auto-generated by STM32CubeIDE
* @brief STM32CubeIDE Minimal System calls file
*
* For more information about which c-functions
* need which of these lowlevel functions
* please consult the Newlib libc-manual
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes */
#include <sys/stat.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
/* Variables */
extern int __io_putchar(int ch) __attribute__((weak));
extern int __io_getchar(void) __attribute__((weak));
char *__env[1] = { 0 };
char **environ = __env;
/* Functions */
void initialise_monitor_handles()
{
}
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
errno = EINVAL;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
*ptr++ = __io_getchar();
}
return len;
}
__attribute__((weak)) int _write(int file, char *ptr, int len)
{
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
__io_putchar(*ptr++);
}
return len;
}
int _close(int file)
{
return -1;
}
int _fstat(int file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
int _isatty(int file)
{
return 1;
}
int _lseek(int file, int ptr, int dir)
{
return 0;
}
int _open(char *path, int flags, ...)
{
/* Pretend like we always fail */
return -1;
}
int _wait(int *status)
{
errno = ECHILD;
return -1;
}
int _unlink(char *name)
{
errno = ENOENT;
return -1;
}
int _times(struct tms *buf)
{
return -1;
}
int _stat(char *file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
int _link(char *old, char *new)
{
errno = EMLINK;
return -1;
}
int _fork(void)
{
errno = EAGAIN;
return -1;
}
int _execve(char *name, char **argv, char **env)
{
errno = ENOMEM;
return -1;
}

80
Core/Src/sysmem.c Normal file
View File

@ -0,0 +1,80 @@
/**
******************************************************************************
* @file sysmem.c
* @author Generated by STM32CubeIDE
* @brief STM32CubeIDE System Memory calls file
*
* For more information about which C functions
* need which of these lowlevel functions
* please consult the newlib libc manual
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes */
#include <errno.h>
#include <stdint.h>
/**
* Pointer to the current high watermark of the heap usage
*/
static uint8_t *__sbrk_heap_end = NULL;
/**
* @brief _sbrk() allocates memory to the newlib heap and is used by malloc
* and others from the C library
*
* @verbatim
* ############################################################################
* # .data # .bss # newlib heap # MSP stack #
* # # # # Reserved by _Min_Stack_Size #
* ############################################################################
* ^-- RAM start ^-- _end _estack, RAM end --^
* @endverbatim
*
* This implementation starts allocating at the '_end' linker symbol
* The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack
* The implementation considers '_estack' linker symbol to be RAM end
* NOTE: If the MSP stack, at any point during execution, grows larger than the
* reserved size, please increase the '_Min_Stack_Size'.
*
* @param incr Memory size
* @return Pointer to allocated memory
*/
void *_sbrk(ptrdiff_t incr)
{
extern uint8_t _end; /* Symbol defined in the linker script */
extern uint8_t _estack; /* Symbol defined in the linker script */
extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */
const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size;
const uint8_t *max_heap = (uint8_t *)stack_limit;
uint8_t *prev_heap_end;
/* Initialize heap end at first call */
if (NULL == __sbrk_heap_end)
{
__sbrk_heap_end = &_end;
}
/* Protect heap from growing into the reserved MSP stack */
if (__sbrk_heap_end + incr > max_heap)
{
errno = ENOMEM;
return (void *)-1;
}
prev_heap_end = __sbrk_heap_end;
__sbrk_heap_end += incr;
return (void *)prev_heap_end;
}

287
Core/Src/system_stm32g4xx.c Normal file
View File

@ -0,0 +1,287 @@
/**
******************************************************************************
* @file system_stm32g4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32g4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the HSI (16 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32g4xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 16
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* Require 48MHz for RNG | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32g4xx_system
* @{
*/
/** @addtogroup STM32G4xx_System_Private_Includes
* @{
*/
#include "stm32g4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE 24000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Defines
* @{
*/
/************************* Miscellaneous Configuration ************************/
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Variables
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = HSI_VALUE;
const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U};
const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U};
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
/* Configure the Vector Table location add offset address ------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (**) HSI_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 24 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp, pllvco, pllr, pllsource, pllm;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case 0x04: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4) + 1U ;
if (pllsource == 0x02UL) /* HSI used as PLL clock source */
{
pllvco = (HSI_VALUE / pllm);
}
else /* HSE used as PLL clock source */
{
pllvco = (HSE_VALUE / pllm);
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25) + 1U) * 2U;
SystemCoreClock = pllvco/pllr;
break;
default:
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/