Sebastian Dröge 0219b6f6fa ptp-helper: Add some tests for functionality and memory safety of unsafe code
These tests are mostly for ensuring that the calls to system APIs are
done correctly and that there are no memory bugs (that would be caught
by valgrind) in the unsafe code.

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/4458>
2023-05-12 17:06:01 +00:00

245 lines
7.1 KiB
Rust

// GStreamer
//
// Copyright (C) 2015-2023 Sebastian Dröge <sebastian@centricular.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License, v2.0.
// If a copy of the MPL was not distributed with this file, You can obtain one at
// <https://mozilla.org/MPL/2.0/>.
//
// SPDX-License-Identifier: MPL-2.0
#[cfg(unix)]
mod unix {
use std::io;
#[cfg(target_os = "linux")]
/// Try using the getrandom syscall on Linux.
pub fn getrandom() -> io::Result<[u8; 8]> {
use std::io::Read;
use crate::ffi::unix::linux::*;
// Depends on us knowing the syscall number
if SYS_getrandom == 0 {
return Err(io::Error::from(io::ErrorKind::Unsupported));
}
struct GetRandom;
impl Read for GetRandom {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
// SAFETY: `getrandom` syscall fills up to the requested amount of bytes of
// the provided memory and returns the number of bytes or a negative value
// on errors.
unsafe {
let res = syscall(SYS_getrandom, buf.as_mut_ptr(), buf.len(), 0u32);
if res < 0 {
Err(std::io::Error::last_os_error())
} else {
Ok(res as usize)
}
}
}
}
let mut r = [0u8; 8];
GetRandom.read_exact(&mut r)?;
Ok(r)
}
/// Try reading random numbers from /dev/urandom.
pub fn dev_urandom() -> io::Result<[u8; 8]> {
use crate::ffi::unix::*;
use std::{io::Read, os::raw::c_int};
struct Fd(c_int);
impl Drop for Fd {
fn drop(&mut self) {
// SAFETY: The fd is valid by construction below and closed by this at
// most once.
unsafe {
// Return value is intentionally ignored as there's nothing that
// can be done on errors anyway.
let _ = close(self.0);
}
}
}
impl Read for Fd {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
// SAFETY: read() requires a valid fd and a mutable buffer with the given size.
// The fd is valid by construction as is the buffer.
//
// read() will return the number of bytes read or a negative value on errors.
let res = unsafe { read(self.0, buf.as_mut_ptr(), buf.len()) };
if res < 0 {
Err(std::io::Error::last_os_error())
} else {
Ok(res as usize)
}
}
}
let mut fd = loop {
// SAFETY: open() requires a NUL-terminated file path and will
// return an integer in any case. A negative value is an invalid fd
// and signals an error. On EINTR, opening can be retried.
let fd = unsafe { open(b"/dev/urandom\0".as_ptr(), O_RDONLY) };
if fd < 0 {
let err = std::io::Error::last_os_error();
if err.kind() == std::io::ErrorKind::Interrupted {
continue;
}
return Err(err);
}
break Fd(fd);
};
let mut r = [0u8; 8];
fd.read_exact(&mut r)?;
Ok(r)
}
#[cfg(test)]
mod test {
#[test]
fn test_dev_urandom() {
match super::dev_urandom() {
Ok(n) => {
assert_ne!(n, [0u8; 8]);
}
Err(err) if err.kind() != std::io::ErrorKind::NotFound => {
panic!("{}", err);
}
_ => (),
}
}
#[cfg(target_os = "linux")]
#[test]
fn test_getrandom() {
match super::getrandom() {
Ok(n) => {
assert_ne!(n, [0u8; 8]);
}
Err(err) if err.kind() != std::io::ErrorKind::Unsupported => {
panic!("{}", err);
}
_ => (),
}
}
}
}
#[cfg(windows)]
mod windows {
use std::io;
/// Call BCryptGenRandom(), which is available since Windows Vista.
pub fn bcrypt_gen_random() -> io::Result<[u8; 8]> {
// SAFETY: BCryptGenRandom() fills the provided memory with the requested number of bytes
// and returns 0 on success. In that case, all memory was written and is initialized now.
unsafe {
use std::{mem, ptr};
use crate::ffi::windows::*;
let mut r = mem::MaybeUninit::<[u8; 8]>::uninit();
let res = BCryptGenRandom(
ptr::null_mut(),
r.as_mut_ptr() as *mut u8,
8,
BCRYPT_USE_SYSTEM_PREFERRED_RNG,
);
if res == 0 {
Ok(r.assume_init())
} else {
Err(io::Error::from_raw_os_error(res as i32))
}
}
}
#[cfg(test)]
mod test {
#[test]
fn test_bcrypt_gen_random() {
let n = super::bcrypt_gen_random().unwrap();
assert_ne!(n, [0u8; 8]);
}
}
}
/// As fallback use a combination of the process ID and the current system time.
fn fallback_rand() -> [u8; 8] {
let now = std::time::SystemTime::now()
.duration_since(std::time::SystemTime::UNIX_EPOCH)
.unwrap()
.as_nanos()
.to_be_bytes();
let pid = std::process::id().to_be_bytes();
[
now[0] ^ now[15] ^ pid[0],
now[1] ^ now[14] ^ pid[1],
now[2] ^ now[13] ^ pid[2],
now[3] ^ now[12] ^ pid[3],
now[4] ^ now[11] ^ pid[0],
now[5] ^ now[10] ^ pid[1],
now[6] ^ now[9] ^ pid[2],
now[7] ^ now[8] ^ pid[3],
]
}
/// Returns a random'ish 64 bit value.
pub fn rand() -> [u8; 8] {
#[cfg(unix)]
{
// Try getrandom syscall or otherwise first on Linux
#[cfg(target_os = "linux")]
{
if let Ok(r) = unix::getrandom() {
return r;
}
}
if let Ok(r) = unix::dev_urandom() {
return r;
}
}
#[cfg(windows)]
{
if let Ok(r) = windows::bcrypt_gen_random() {
return r;
}
}
fallback_rand()
}
#[cfg(test)]
mod test {
// While not a very useful test for randomness, we're mostly interested here
// in whether the memory is initialized correctly and nothing crashes because
// of the usage of unsafe code above. If the memory was not initialized fully
// then this test would fail in e.g. valgrind.
//
// Technically, all zeroes could be returned as a valid random number but that's
// extremely unlikely and more likely a bug in the code above.
#[test]
fn test_rand() {
let n = super::rand();
assert_ne!(n, [0u8; 8]);
}
#[test]
fn test_fallback_rand() {
let n = super::fallback_rand();
assert_ne!(n, [0u8; 8]);
}
}