Basic Files

This commit is contained in:
beri-he 2025-05-29 19:19:47 +02:00
parent 0a1aa70637
commit b0c5b22c30
73 changed files with 198857 additions and 0 deletions

View File

@ -0,0 +1,32 @@
clear all
close all
%https://www.infineon.com/dgdl/Infineon-IPA95R130PFD7-DataSheet-v02_01-EN.pdf?fileId=8ac78c8c81ae03fc0181f72507e62e68
fs = 100e3; %Switching frequency [Hz]
n = 12;
V_in_max = 600; %Maximum input voltage [V]
Ip_rms = 3; %Primary RMS Current [A]
R_DS = 0.13; %Drain-Source-Resistance [Ohm]
C_oss = 53e-12; %Output Capacitance [F]
V_DS_meas = 400; %Drain-Source-Voltage during measurement of Coss [V]
C_oss_avg = C_oss*sqrt(V_DS_meas/V_in_max); %Average output capacitance [F]
Q_g = 141e-9; %Total gate charge [nC]
V_GS = 10; %Applied Gate Voltage [V]
%Calculate losses
P_cond = power(Ip_rms,2)*R_DS; %Conduction Losses [W]
P_cap = Q_g*V_GS*fs; %Capacitive switching losses [W]
P_loss = 4*(P_cond+P_cap); %Losses of the full bridge [W]
%Calculate Shim Inductor
Ipp = 4.4; %Peak to Peak primary Current at 300W and 600V [A]
dI_L = 5.1; %Output Inductor ripple [A]
Ls_min = 2*C_oss_avg*power(V_in_max/((Ipp-dI_L/n)/2),2); %Necessary leakage inductance [H]

Binary file not shown.

View File

@ -0,0 +1,7 @@
x, y
0.3805770584095707, 0.11001471479027736
0.44897959183673464, 0.6058755398375443
0.5604503870513723, 2.6599315841134215
0.701688951442646, 7.924351487246231
0.8384940182969739, 23.607880318602913
0.9271639690358902, 41.60743893429978
1 x y
2 0.3805770584095707 0.11001471479027736
3 0.44897959183673464 0.6058755398375443
4 0.5604503870513723 2.6599315841134215
5 0.701688951442646 7.924351487246231
6 0.8384940182969739 23.607880318602913
7 0.9271639690358902 41.60743893429978

View File

@ -0,0 +1,34 @@
%% Skript zur Berechnung der Verluste der Gleichrichter-FETs
clear all
close all
fs = 100e3; %Switching frequency [Hz]
n = 12; %Turns ratio
V_DS_max = 600/n *2; %Maximum Drain-Source-Voltage [V]
Is_rms = 1000/24; %Secondary RMS Current [A]
R_DS = 0.13; %Drain-Source-Resistance [Ohm]
C_oss = 53e-12; %Output Capacitance [F]
V_DS_meas = 400; %Drain-Source-Voltage during measurement of Coss [V]
C_oss_avg = C_oss*sqrt(V_DS_meas/V_DS_max); %Average output capacitance [F]
t_r = 30e-9; %Rise time [s]
t_f = 30e-9; %Fall time [s]
V_GS = 10; %Gate-Source-Voltage [V]
Q_g = 100e-9; %Gate Charge Miller Plateau[C]
%Calculate losses
P_cond = power(Is_rms,2)*R_DS; %Conduction Losses [W]
P_cap = 2*(Q_g*V_GS*fs/2 + V_DS_max*V_DS_max*C_oss_avg*fs/2); %Capacitive switching losses [W]
P_sw = 1/2 * Is_rms * V_DS_max * fs * (t_r+t_f); %Switching loss [W]
P_loss = 2*(P_cond+P_cap+P_sw); %Losses of the rectifier [W]

View File

@ -0,0 +1,124 @@
Version 4
SHEET 1 3680 1664
WIRE -1456 -2016 -1456 -2080
WIRE -1312 -2016 -1312 -2080
WIRE -1456 -1872 -1456 -1936
WIRE -1312 -1872 -1312 -1936
WIRE -1104 -1824 -1136 -1824
WIRE -912 -1824 -1024 -1824
WIRE -784 -1824 -912 -1824
WIRE -544 -1824 -784 -1824
WIRE -912 -1792 -912 -1824
WIRE -784 -1792 -784 -1824
WIRE -1136 -1760 -1136 -1824
WIRE -1136 -1632 -1136 -1680
WIRE -912 -1632 -912 -1728
WIRE -912 -1632 -1136 -1632
WIRE -784 -1632 -784 -1728
WIRE -784 -1632 -912 -1632
WIRE -1136 -1600 -1136 -1632
WIRE -544 -1520 -544 -1824
WIRE -128 -1520 -544 -1520
WIRE -544 -1360 -544 -1520
WIRE -544 -1360 -560 -1360
WIRE -560 -1344 -560 -1360
WIRE -128 -1216 -128 -1520
WIRE -560 -960 -560 -1280
WIRE -544 -960 -560 -960
WIRE -128 -960 -128 -1136
WIRE -128 -960 -544 -960
WIRE -144 -592 -288 -592
WIRE -544 -576 -544 -960
WIRE -496 -576 -544 -576
WIRE -256 -560 -288 -560
WIRE -240 -560 -256 -560
WIRE -496 -544 -768 -544
WIRE -256 -528 -256 -560
WIRE -256 -528 -288 -528
WIRE -768 -512 -768 -544
WIRE -144 -432 -144 -592
WIRE -144 -432 -560 -432
WIRE -768 -416 -768 -432
WIRE -560 -336 -560 -432
WIRE -560 -336 -768 -336
WIRE -560 -16 -560 -336
FLAG -1136 -1600 0
FLAG -1312 -1872 0
FLAG -1312 -2080 Tc
FLAG -1456 -1872 0
FLAG -1456 -2080 Tj
FLAG -544 -960 Phase
FLAG -560 -16 0
FLAG -240 -560 Tj
SYMBOL voltage -1136 -1776 R0
WINDOW 123 0 0 Left 0
SYMATTR SpiceLine Rser={Rser}
SYMATTR InstName V4
SYMATTR Value {U_DC}
SYMBOL voltage -1312 -2032 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V5
SYMATTR Value 25
SYMBOL voltage -1456 -2032 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V6
SYMATTR Value 25
SYMBOL ind -144 -1232 R0
SYMATTR InstName L1
SYMATTR Value {L_load}
SYMATTR SpiceLine Rser={R_load}
SYMBOL voltage -768 -432 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
WINDOW 3 24 96 Invisible 2
SYMATTR Value PULSE({V_GS_neg} {V_GS_pos} 100n 5n 5n {T_on} {T_on+T_off})
SYMATTR InstName PWM_LS
SYMBOL cap -800 -1792 R0
SYMATTR InstName C1
SYMATTR Value 100µ
SYMATTR SpiceLine Rser={ESR} Lser={ESL}
SYMBOL cap -928 -1792 R0
SYMATTR InstName C2
SYMATTR Value 100µ
SYMATTR SpiceLine Rser={ESR} Lser={ESL}
SYMBOL ind -1120 -1808 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 5 56 VBottom 2
SYMATTR InstName L3
SYMATTR Value 5µ
SYMBOL res -752 -416 R180
WINDOW 0 36 76 Left 2
WINDOW 3 36 40 Left 2
SYMATTR InstName R1
SYMATTR Value {R_G_on}
SYMBOL IPA95R130PFD7_L3 -400 -560 R0
SYMATTR InstName U3
SYMBOL diode -544 -1280 R180
WINDOW 0 24 64 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D1
TEXT 560 -2056 Left 2 !.tran 0 {T_sim} 0 5E-10
TEXT -104 -2224 Left 2 !.param L_load=110u\n.param R_load= 11m
TEXT -104 -2120 Left 2 !.param U_DC =600\n.param Rser = 100m\n.param I_DS = 5
TEXT 568 -1904 Left 2 !.options ABSTOL=100p\n.options CHGTOL=1p\n.options ITL1=150\n.options ITL2=150\n.options ITL4=500\n.options RELTOL=0.0001
TEXT 240 -1296 Left 2 !.meas TRAN E_off INTEG V(Phase)*Ix(U3:drain) FROM T_load TO T_load+ T_off/4\n.meas TRAN E_on INTEG V(Phase)*Ix(U3:drain) FROM T_load+T_off TO T_load+5*T_off/4\n.meas TRAN P_cond_on1 FIND Ix(U3:drain)*V(Phase) AT T_load+5*T_off/4\n.meas TRAN P_cond_on_2 FIND Ix(U3:drain)*V(Phase) AT T_load+5*T_off/4 + 50n\n.meas P_cond PARAM (P_cond_on1+P_cond_on_2)/2\n.meas E_cond PARAM {P_cond *(T_Off/4)}\n.meas E_off_uJ PARAM {E_off*1000000}\n.meas E_on_uJ PARAM {(E_on - E_cond)*1000000}
TEXT -1128 -1912 Left 2 ;DC Quelle & Zwischenkreis
TEXT -1480 -2144 Left 2 ;Temperatur der MOSFETs
TEXT -104 -2320 Left 3 ;Parametereingabe
TEXT -104 -2256 Left 2 ;Lastinduktivität
TEXT 560 -2264 Left 2 !.param tau_load=L_load/R_load\n.param I_max=U_DC/R_load\n.param T_load=-tau_load*ln(1-I_DS/I_max)\n.param T_on=T_load\n.param T_off = 1u\n.param T_sim=2*(T_on+T_off)
TEXT -104 -2152 Left 2 ;DC-Spannung und Drainstrom
TEXT -104 -2016 Left 2 ;DC-Link Kondensatoren
TEXT -104 -1984 Left 2 !.param ESR = 1m\n.param ESL = 1n
TEXT 552 -2312 Left 3 ;Berechnung der Schaltzeitpunkte
TEXT 232 -1344 Left 3 ;Optional Berechnung Schaltenergien (default nicht aktiviert)
TEXT 568 -1944 Left 3 ;Simulationsparameter (nicht ändern)
TEXT -104 -1904 Left 2 ;Powerloop Induktivität
TEXT -104 -1872 Left 2 !.param L_power=10n
TEXT 232 -1576 Left 3 ;Import der Modelle
TEXT -104 -1824 Left 2 ;Gatedrive Parameter
TEXT -104 -1784 Left 2 !.param R_G_on =5.3\n.param R_G_off = 2.87\n.param V_GS_pos = 13\n.param V_GS_neg = 0
TEXT -1488 -2312 Left 6 ;Modell zur Simuation des DPTs
TEXT 264 -1440 Left 2 !.inc Lib\\IFX-SimulationModel_CoolMOS_PFD7_950V_Spice-web.lib

View File

@ -0,0 +1,38 @@
Questionable use of curly braces in ".meas e_cond param {p_cond*(t_off/4)}"
Error: undefined symbol in: "[p_cond]*(t_off/4)"
Questionable use of curly braces in ".meas e_off_uj param {e_off*1000000}"
Error: undefined symbol in: "[e_off]*1000000"
Questionable use of curly braces in ".meas e_on_uj param {(e_on-e_cond)*1000000}"
Error: undefined symbol in: "([e_on]-e_cond)*1000000"
LTspice 24.0.12 for Windows
Circuit: * C:\Users\Vincents Laptop\Documents\TU Berlin\Fasttube\Electronics\DCDC\Konzept\PSFB\FETs\Spice\DPT_Switching_Energies.asc
Start Time: Tue May 27 20:54:41 2025
solver = Normal
Maximum thread count: 16
tnom = 27
temp = 27
method = modified trap
abstol = 1e-10
reltol = 0.0001
chgtol = 1e-12
c1: Increased Cpar to 1e-10
c2: Increased Cpar to 1e-10
WARNING: Less than two connections to node tc. This node is used by v5.
Direct Newton iteration for .op point succeeded.
Changing Tseed to 5e-14
Changing Tseed to 5e-16
Heightened Def Con from 7.32422e-16 to 1e-09
Heightened Def Con from 1e-07 to 1.045e-07
Heightened Def Con from 2.01671e-06 to 2.02176e-06
e_off: INTEG(v(phase)*ix(u3:drain))=1.37158e-06 FROM 9.16709e-07 TO 1.16671e-06
e_on: INTEG(v(phase)*ix(u3:drain))=1.64926e-05 FROM 1.91671e-06 TO 2.16671e-06
p_cond_on1: ix(u3:drain)*v(phase)=4.38208 at 2.16671e-06
p_cond_on_2: ix(u3:drain)*v(phase)=4.77517 at 2.21671e-06
p_cond: (p_cond_on1+p_cond_on_2)/2=4.57862
e_cond: (p_cond*(t_off/4))=1.14466e-06
e_off_uj: (e_off*1000000)=1.37158
e_on_uj: ((e_on-e_cond)*1000000)=15.348
Total elapsed time: 1.335 seconds.

View File

@ -0,0 +1,19 @@
Version 4
SymbolType BLOCK
RECTANGLE Normal -96 -40 112 40
WINDOW 0 8 -40 Bottom 2
WINDOW 3 8 40 Top 2
WINDOW 39 8 64 Top 2
SYMATTR Prefix X
SYMATTR Value IPW95R130PFD7_L1
SYMATTR ModelFile C:\Users\Vincents Laptop\Documents\TU Berlin\Fasttube\Electronics\DCDC\Konzept\PSFB\FETs\Spice\Lib\IFX-SimulationModel_CoolMOS_PFD7_950V_Spice-web.lib
SYMATTR SpiceLine dVth=0 dRdson=0
PIN -96 0 LEFT 8
PINATTR PinName drain
PINATTR SpiceOrder 1
PIN 112 -16 RIGHT 8
PINATTR PinName gate
PINATTR SpiceOrder 2
PIN 112 16 RIGHT 8
PINATTR PinName source
PINATTR SpiceOrder 3

View File

@ -0,0 +1,883 @@
*****************************************************************
* INFINEON Power Transistors *
* Content: SPICE Model Library *
* Device: CoolMOS (Superjunction MOSFET) *
* Model Types: L0 L1 L3 *
* Technology: PFD7 950V *
* Date and time: 28.02.2022 15:02:54 *
* Version: 869-718-870-934-885-945 *
*****************************************************************
* *
* The models for Infineon Power MOSFET are evaluated with *
* SIMetrixTM-SPICE simulator. The Infineon Power MOSFET models *
* are tested, verified and provided in SPICE simulation code. *
* *
* Infineon | Terminals | Usage suggestion *
* Level | | *
* ------------------------------------------------------------- *
* L0 | G, D, S | General electrical simulations/ whole *
* | | application circuits. *
* ------------------------------------------------------------- *
* L1 | G, D, S | Transient, switching losses and *
* | | efficiency analyses. Behavior of *
* | | device over full temperature range. *
* ------------------------------------------------------------- *
* L2 | G, D, S, | Same as L1 but with individual device *
* | Tj, Tcase | temperature. This model is not *
* | | supported because it is covered by *
* | | L3-model. *
* ------------------------------------------------------------- *
* L3 | G, D, S, | Self-heating effects, modeling of heat *
* | Tj, Tcase | flow including thermal models of *
* | | application. *
* *
*****************************************************************
* Detailed Informations: *
* *
* The model files are available on the Infineon web page: *
* http://www.infineon.com *
* Please refer also to the Infineon application note AN 2014-02 *
* "Simulation models for Infineon Power MOSFET" *
* *
* This library contains models of the following INFINEON *
* CoolMOS transistors: *
* *
* PFD7 950V *
* IPW95R060PFD7 IPW95R130PFD7 IPA95R130PFD7 *
* IPB95R130PFD7 IPW95R310PFD7 IPA95R310PFD7 *
* IPB95R310PFD7 IPA95R450PFD7 IPB95R450PFD7 *
* IPD95R450PFD7 *
* *
*****************************************************************
**********************************************************************
************************ L1 TECHNOLOGY MODEL *************************
**********************************************************************
.SUBCKT cool_tech dd g s Tj t1 PARAMS: a=1 dVth=0 dR=0 Inn=1 Unn=1 Rmax=1
+gmin=1 Rs=1 Rdp=1 heat=0
.PARAM fpar42=298
.PARAM fpar1=3.61
.PARAM fpar2=0.004
.PARAM fpar3=-0.0011
.PARAM fpar4=11.8
.PARAM fpar5=2.35
.PARAM fpar6=3.3
.PARAM fpar7=0.393
.PARAM fpar8=10.5
.PARAM fpar9=1.3
.PARAM fpar10=5.68
.PARAM fpar11=1.7413
.PARAM fpar12=50
.PARAM fpar13=0.295
.PARAM fpar14=-23
.PARAM fpar15=1045
.PARAM fpar16=1.045
.PARAM fpar18=0.25
.PARAM fpar19=-30
.PARAM fpar20=0.8e-007
.PARAM fpar21=1.09
.PARAM fpar22=0.25
.PARAM fpar23=1.47e-015
.PARAM fpar24=2.8e-010
.PARAM fpar25=8.546e-011
.PARAM fpar26=5.14e-012
.PARAM fpar27=1.66e-015
.PARAM fpar28=12e-013
.PARAM fpar29=8.334e-012
.PARAM fpar30=4.72e-013
.PARAM fpar31=1e-014
.PARAM fpar32=142
.PARAM fpar33=1.3e-012
.PARAM fpar34=0.5e-012
.PARAM fpar35=1.712e-010
.PARAM fpar36=6.739625e-008
.PARAM fpar37=3.46758e-009
.PARAM fpar38=1.6e-010
.PARAM fpar39=0.3e-010
.PARAM fpar17=0.0
.PARAM fpar40=85.8u
.PARAM fpar41=273
.PARAM dRdi={fpar18/a}
.PARAM Cdio={fpar23*a}
.PARAM Cdg1={fpar24*a+fpar25*SQRT(a)}
.PARAM Cdg2={fpar26*a}
.PARAM CdgV1={fpar27*a}
.PARAM CdgV2={(fpar31*a+fpar28)}
.PARAM Cds0={fpar33*a+fpar34*SQRT(a)}
.PARAM Cds1={a*fpar35+40p*4*SQRT(a)}
.PARAM Cgs0={fpar38*a+fpar39*(SQRT(a))}
.PARAM Vmin=3.01 Vmax=4.21
.PARAM Vth={fpar1+(Vmax-fpar1)*limit(dVth,0,1)-(Vmin-fpar1)*limit(dVth,-1,0)}
.PARAM r0={fpar8*((fpar41/fpar42)**fpar9)*a}
.PARAM r1={(Unn-Inn*Rs-fpar1)*r0}
.PARAM r2={(fpar17*SQRT(0.4)-fpar11)*Inn*r0}
.PARAM Rlim={(r1+2*r2*Rmax-SQRT(r1**2+4*r2))/(2*r2)}
.PARAM dRd={fpar5/a+if(dVth==0,limit(dR,0,1)*max(Rlim-fpar5/a-Rs-Rdp,0),0)}
.PARAM CAP_eedg=-0.556
.PARAM x0={(fpar29-fpar26)/fpar30} x1={fpar29/fpar30} dx={x1-x0}
.FUNC QCdg1(x) {Cdg2*min(x,x1)+CdgV2*max(x-x1,0)+CdgV1/2*max(0, x-fpar32)**2+(Cdg2-CdgV2)*((limit(x,x0,x1)-x0)**3/(dx*dx)*((limit(x,x0,x1)-x0)/(2*dx)-1))}
.PARAM Eds1={-6000} Eds2={-320} Eds3={-200} eeds1={-0.1667} eeds2={-6.25m} eeds3={-0.05}
.PARAM a0={(fpar36-fpar35)/fpar37} a1={fpar36/fpar37} da={a1-a0}
.FUNC QCds1(x) {Cds1*min(x,a1)+Cds1*((limit(x,a0,a1)-a0)**3/(da*da)*((limit(x,a0,a1)-a0)/(2*da)-1))}
E_Edg1 d1 ox VALUE {if(V(d1,g)>0,V(d1,g)-(exp(CAP_eedg*max(V(d1,g),0))-1)/CAP_eedg,0)}
C_Cdg1 ox g {Cdg1}
E_Edg2 d1 ox2 VALUE {V(d1,g)-QCdg1(V(d1,g))/Cdg2}
C_Cdg2 ox2 g {Cdg2}
C_Cds0 d1 s {Cds0}
E_Eds1 d1 edep1 VALUE {if(V(d1,s)>0,V(d1,s)-Eds1*(exp(eeds1*max(V(d1,s),0))-1)-Eds2*(exp(eeds2*max(V(d1,s),0))-1)-Eds3*(exp(eeds3*max(V(d1,s),0))-1),0)}
C_Cds1 edep1 s {Cds0}
E_Eds2 d1 edep2 VALUE {V(d1,s)-QCds1(V(d1,s))/Cds1}
C_Cds2 edep2 s {Cds1}
C_Cgs g s {Cgs0}
.FUNC I0(Uee,p,pp,z1,cc) {if(Uee>pp,(Uee-cc*z1)*z1,p*(pp-p)/cc*exp((Uee-pp)/p))}
.FUNC Ig(Uds,T,p,Uee,cc) {fpar8*(fpar41/T)**fpar9*I0(Uee,p,min(2*p,p+cc*Uds),min(Uds,Uee/(2*cc)),cc)}
.FUNC J(d,g,T,da,s)
+ {a*(s*(Ig(da,T,fpar10*fpar40*T,g-Vth+fpar2*(T-fpar42),fpar11)+1*exp(min(fpar14+(d-fpar15-fpar16*(T-fpar42))/fpar13,25))))}
G_chan d s VALUE={J(V(d,s),V(g,s),fpar41+limit(V(Tj),-200,499),(SQRT(1+4*fpar12*abs(V(d,s)))-1)/2/fpar12,sgn(V(d,s)))}
V_Ichannel d1 d 0
.FUNC Rd0(T) {(fpar7*dRd+(1-fpar7)*dRd*(T/fpar42)**fpar6)}
.FUNC CF(T,Iepi) {(fpar4**2)/max(1,fpar4**2-(Rd0(T)*Iepi)**limit(2+fpar3*(T-fpar42),1.2,3))}
V_Iepi dd d2 0
G_G_Rd d2 d1 VALUE {V(d2,d1)/(Rd0(fpar41+LIMIT(V(t1),-200,999))*CF(fpar41+LIMIT(V(t1),-200,999),abs(I(V_Iepi))))}
Dbody s dio dbody
.model dbody D (BV={fpar15*10}, CJO ={Cdio}, TT={fpar20}, IS ={a*exp(fpar19)} m={0.3} RS={dRdi/100} N={fpar21} )
G_Rdio dio2 dd VALUE={V(dio2,dd)/(dRdi*((limit(V(Tj),-200,999)+fpar41)/fpar42)**fpar22)}
V_sense2 dio2 dio 0
R_R_ERd_g d2 d1 10k
R1 g s 1G
Rd01 d s 500Meg
Rd02 d2 s 500Meg
Rd03 dio s 500Meg
G_G_Ptot_channel 0 Tj VALUE {heat*LIMIT(V(d,s)*I(V_Ichannel),0,100k) }
G_G_Ptot_Epi 0 t1 VALUE {heat*(LIMIT(V(dd,d1)*I(V_Iepi),0,100k)+LIMIT(V(dd,s)*I(V_sense2),0,100k))}
.ENDS
**********************************************************************
**********************************************************************
************************ L0 TECHNOLOGY MODEL *************************
**********************************************************************
.SUBCKT cool_tech0a d1 g2 s2 PARAMS: a=1
.PARAM MOS_KP_A={4.05}
.PARAM MOS_VTO={3.6}
.PARAM MOS_THETA={0.2}
.PARAM MOS_ETA={0.0+0.00}
.PARAM MOS_RdA={1.85}
.PARAM MOS_TC_RD={22m}
.PARAM MOSR_KPR_A={2.0}
.PARAM MOSR_VTOR={-1*1.0}
.PARAM MOSR_LAMBDAR={0.15*1.4}
.PARAM Dbt_BV={950}
.PARAM Dbt_M={0.9*1.0}
.PARAM Dbt_CJ0_A={0.3n}
.PARAM Dbt_VJ={0.5*1.0}
.PARAM DBODY_IS_A={200p}
.PARAM DBODY_N={1.5}
.PARAM DBODY_RRS={5u*1}
.PARAM DBODY_EG={1.12*1}
.PARAM DBODY_TT=250n
.PARAM DBODY_RSA={250m}
.PARAM DBODY_RS_TC={0.70m}
.PARAM DGD_M={0.55*1.0}
.PARAM DGD_VJ={0.5*1.0}
.PARAM CAP_Cox_Aa={0.030n}
.PARAM CAP_Cgs_Aa={0.18n}
.PARAM CAP_Cds1_Aa={0.9p}
.PARAM MOS_KP={MOS_KP_A*a}
.PARAM MOS_Rd={MOS_RdA/a}
.PARAM MOSR_KPR={MOSR_KPR_A*a}
.PARAM Dbt_CJ0={Dbt_CJ0_A*a}
.PARAM DBODY_IS={DBODY_IS_A*a}
.PARAM DBODY_RS={DBODY_RSA/a}
.PARAM CAP_Cox_a={CAP_Cox_Aa*a}
.PARAM CAP_Cgs_a={CAP_Cgs_Aa*a}
.PARAM CAP_Cds1_a={CAP_Cds1_Aa*a}
M1 d2 g2 s2 s2 DMOS L=1u W=1u
.MODEL DMOS NMOS ( KP= {MOS_KP} VTO={MOS_VTO} THETA={MOS_THETA} VMAX=1.5e5 ETA={MOS_ETA} LEVEL=3)
Rd d2 d1a {MOS_Rd} TC1={MOS_TC_RD}
.MODEL MVDR NMOS (KP={MOSR_KPR} VTO={MOSR_VTOR} LAMBDA={MOSR_LAMBDAR})
Mr d1 d2a d1a d1a MVDR W=1u L=1u
Rx d2a d1a 1m
Cds1 s2 d2 {CAP_Cds1_a}
Dbd s2 d2 Dbt
.MODEL Dbt D(BV={Dbt_BV} M={Dbt_M} CJO={Dbt_CJ0} VJ={Dbt_VJ})
Dbody s2 21 DBODY
.MODEL DBODY D(IS={DBODY_IS} N={DBODY_N} RS={DBODY_RRS} EG={DBODY_EG} TT={DBODY_TT})
Rdiode d1 21 {DBODY_RS} TC1={DBODY_RS_TC}
.MODEL sw NMOS(VTO=0 KP=10 LEVEL=1)
Maux g2 c a a sw
Maux2 b d g2 g2 sw
Eaux c a d2 g2 1
Eaux2 d g2 d2 g2 -1
Cox b d2 {10*CAP_Cox_a}
.MODEL DGD D(M={DGD_M} CJO={CAP_Cox_a} VJ={DGD_VJ})
Rpar b d2 1Meg
Dgd a d2 DGD
Rpar2 d2 a 10Meg
Cgs g2 s2 {CAP_Cgs_a}
.ENDS cool_tech0a
**********************************************************************
.SUBCKT IPW95R060PFD7_L0 drain gate source
.PARAM act=57.03
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 8.32E-09
Ld drain dd 1.88E-09
Ls source s1 2.82E-09
Rs s1 s 3.42E-04
Rg g1 g 0.5
.ENDS IPW95R060PFD7_L0
********************************************************************************
.SUBCKT IPW95R060PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=3.42E-04 Rg=0.5 Rdp=7.44E-05 Ls=2.82E-09 Ld=1.88E-09
.PARAM Lg=8.32E-09 act=57.03 Inn={1.0*57.03} Unn=10.0 Rmax=60.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPW95R060PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=3.42E-04 Rg=0.5 Rdp=7.44E-05 Ls=2.82E-09 Ld=1.88E-09
.PARAM Lg=8.32E-09 act=57.03 Inn={1.0*57.03} Unn=10.0 Rmax=60.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 548.626u
C_Czth2 0 1 5.615m
C_Czth3 0 2 4.999m
C_Czth4 0 3 26.628m
C_Czth5 0 4 145.15m
C_Czth6 0 Tcase 500.0m
C_Czth7 0 6 1.9
C_Czth8 0 7 2.0
R_Rth1 Tj 1 {4.14m+lzth*1.07m}
R_Rth2 1 2 {5.89m+lzth*1.53m}
R_Rth3 2 3 {22.26m+lzth*5.77m}
R_Rth4 3 4 {42.61m+lzth*66.98m}
R_Rth5 4 Tcase {63.3m+lzth*66.44m}
R_Rth6 Tcase 6 200.0m
R_Rth7 6 7 6.3
.ENDS
********************************************************************************
.SUBCKT IPW95R130PFD7_L0 drain gate source
.PARAM act=25.05
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 8.38E-09
Ld drain dd 1.94E-09
Ls source s1 3.12E-09
Rs s1 s 4.38E-04
Rg g1 g 0.9
.ENDS IPW95R130PFD7_L0
********************************************************************************
.SUBCKT IPW95R130PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=4.38E-04 Rg=0.9 Rdp=7.44E-05 Ls=3.12E-09 Ld=1.94E-09
.PARAM Lg=8.38E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPW95R130PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=4.38E-04 Rg=0.9 Rdp=7.44E-05 Ls=3.12E-09 Ld=1.94E-09
.PARAM Lg=8.38E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 240.98u
C_Czth2 0 1 2.466m
C_Czth3 0 2 2.196m
C_Czth4 0 3 11.696m
C_Czth5 0 4 63.756m
C_Czth6 0 Tcase 500.0m
C_Czth7 0 6 1.9
C_Czth8 0 7 2.0
R_Rth1 Tj 1 {9.43m+lzth*2.45m}
R_Rth2 1 2 {13.41m+lzth*3.48m}
R_Rth3 2 3 {50.68m+lzth*13.14m}
R_Rth4 3 4 {86.45m+lzth*121.96m}
R_Rth5 4 Tcase {128.27m+lzth*120.74m}
R_Rth6 Tcase 6 200.0m
R_Rth7 6 7 6.3
.ENDS
********************************************************************************
.SUBCKT IPA95R130PFD7_L0 drain gate source
.PARAM act=25.05
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.17E-09
Ld drain dd 1.86E-09
Ls source s1 2.08E-09
Rs s1 s 3.83E-04
Rg g1 g 0.9
.ENDS IPA95R130PFD7_L0
********************************************************************************
.SUBCKT IPA95R130PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=3.83E-04 Rg=0.9 Rdp=2.36E-04 Ls=2.08E-09 Ld=1.86E-09
.PARAM Lg=6.17E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPA95R130PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=3.83E-04 Rg=0.9 Rdp=2.36E-04 Ls=2.08E-09 Ld=1.86E-09
.PARAM Lg=6.17E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 240.98u
C_Czth2 0 1 2.466m
C_Czth3 0 2 2.196m
C_Czth4 0 3 11.696m
C_Czth5 0 4 36.599m
C_Czth6 0 5 18.0m
C_Czth7 0 6 500.0m
C_Czth8 0 7 600.0m
R_Rth1 Tj 1 {9.43m+lzth*2.45m}
R_Rth2 1 2 {13.41m+lzth*3.48m}
R_Rth3 2 3 {50.68m+lzth*13.14m}
R_Rth4 3 4 {86.45m+lzth*55.77m}
R_Rth5 4 5 {85.51m+lzth*54.55m}
R_Rth6 5 6 400.0m
R_Rth7 6 7 5.0
R_Rth8 5 Tcase {2.1+lzth*1.33}
.ENDS
********************************************************************************
.SUBCKT IPB95R130PFD7_L0 drain gate source
.PARAM act=25.05
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.34E-09
Ld drain dd 2.34E-09
Ls source s1 2.55E-09
Rs s1 s 4.50E-04
Rg g1 g 0.9
.ENDS IPB95R130PFD7_L0
********************************************************************************
.SUBCKT IPB95R130PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=4.50E-04 Rg=0.9 Rdp=3.76E-04 Ls=2.55E-09 Ld=2.34E-09
.PARAM Lg=6.34E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPB95R130PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=4.50E-04 Rg=0.9 Rdp=3.76E-04 Ls=2.55E-09 Ld=2.34E-09
.PARAM Lg=6.34E-09 act=25.05 Inn={1.0*25.05} Unn=10.0 Rmax=130.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 240.98u
C_Czth2 0 1 2.466m
C_Czth3 0 2 2.196m
C_Czth4 0 3 11.696m
C_Czth5 0 4 30.499m
C_Czth6 0 Tcase 140.0m
C_Czth7 0 6 220.0m
C_Czth8 0 7 500.0m
R_Rth1 Tj 1 {9.43m+lzth*2.45m}
R_Rth2 1 2 {13.41m+lzth*3.48m}
R_Rth3 2 3 {50.68m+lzth*13.14m}
R_Rth4 3 4 {86.45m+lzth*143.34m}
R_Rth5 4 Tcase {85.51m+lzth*142.12m}
R_Rth6 Tcase 6 400.0m
R_Rth7 6 7 30.0
.ENDS
********************************************************************************
.SUBCKT IPW95R310PFD7_L0 drain gate source
.PARAM act=10.39
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 8.96E-09
Ld drain dd 2.38E-09
Ls source s1 4.36E-09
Rs s1 s 1.16E-03
Rg g1 g 1
.ENDS IPW95R310PFD7_L0
********************************************************************************
.SUBCKT IPW95R310PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=1.16E-03 Rg=1 Rdp=7.67E-05 Ls=4.36E-09 Ld=2.38E-09
.PARAM Lg=8.96E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPW95R310PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=1.16E-03 Rg=1 Rdp=7.67E-05 Ls=4.36E-09 Ld=2.38E-09
.PARAM Lg=8.96E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 99.951u
C_Czth2 0 1 1.023m
C_Czth3 0 2 910.819u
C_Czth4 0 3 4.851m
C_Czth5 0 4 26.444m
C_Czth6 0 Tcase 500.0m
C_Czth7 0 6 1.9
C_Czth8 0 7 2.0
R_Rth1 Tj 1 {22.74m+lzth*5.9m}
R_Rth2 1 2 {32.33m+lzth*8.38m}
R_Rth3 2 3 {122.19m+lzth*31.68m}
R_Rth4 3 4 {181.57m+lzth*164.59m}
R_Rth5 4 Tcase {268.97m+lzth*161.64m}
R_Rth6 Tcase 6 200.0m
R_Rth7 6 7 6.3
.ENDS
********************************************************************************
.SUBCKT IPA95R310PFD7_L0 drain gate source
.PARAM act=10.39
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.17E-09
Ld drain dd 2.02E-09
Ls source s1 2.92E-09
Rs s1 s 9.06E-04
Rg g1 g 1
.ENDS IPA95R310PFD7_L0
********************************************************************************
.SUBCKT IPA95R310PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=9.06E-04 Rg=1 Rdp=2.35E-04 Ls=2.92E-09 Ld=2.02E-09
.PARAM Lg=6.17E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPA95R310PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=9.06E-04 Rg=1 Rdp=2.35E-04 Ls=2.92E-09 Ld=2.02E-09
.PARAM Lg=6.17E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 99.951u
C_Czth2 0 1 1.023m
C_Czth3 0 2 910.819u
C_Czth4 0 3 4.851m
C_Czth5 0 4 14.207m
C_Czth6 0 5 18.0m
C_Czth7 0 6 500.0m
C_Czth8 0 7 600.0m
R_Rth1 Tj 1 {22.74m+lzth*5.9m}
R_Rth2 1 2 {32.33m+lzth*8.38m}
R_Rth3 2 3 {122.19m+lzth*31.68m}
R_Rth4 3 4 {181.57m+lzth*99.74m}
R_Rth5 4 5 {179.32m+lzth*96.79m}
R_Rth6 5 6 400.0m
R_Rth7 6 7 5.0
R_Rth8 5 Tcase {2.1+lzth*1.12}
.ENDS
********************************************************************************
.SUBCKT IPB95R310PFD7_L0 drain gate source
.PARAM act=10.39
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.35E-09
Ld drain dd 2.47E-09
Ls source s1 3.50E-09
Rs s1 s 9.95E-04
Rg g1 g 1
.ENDS IPB95R310PFD7_L0
********************************************************************************
.SUBCKT IPB95R310PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=9.95E-04 Rg=1 Rdp=3.76E-04 Ls=3.50E-09 Ld=2.47E-09
.PARAM Lg=6.35E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPB95R310PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=9.95E-04 Rg=1 Rdp=3.76E-04 Ls=3.50E-09 Ld=2.47E-09
.PARAM Lg=6.35E-09 act=10.39 Inn={1.0*10.39} Unn=10.0 Rmax=310.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 99.951u
C_Czth2 0 1 1.023m
C_Czth3 0 2 910.819u
C_Czth4 0 3 4.851m
C_Czth5 0 4 11.839m
C_Czth6 0 Tcase 140.0m
C_Czth7 0 6 220.0m
C_Czth8 0 7 500.0m
R_Rth1 Tj 1 {22.74m+lzth*5.9m}
R_Rth2 1 2 {32.33m+lzth*8.38m}
R_Rth3 2 3 {122.19m+lzth*31.68m}
R_Rth4 3 4 {181.57m+lzth*209.42m}
R_Rth5 4 Tcase {179.32m+lzth*206.47m}
R_Rth6 Tcase 6 400.0m
R_Rth7 6 7 30.0
.ENDS
********************************************************************************
.SUBCKT IPA95R450PFD7_L0 drain gate source
.PARAM act=7.16
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.17E-09
Ld drain dd 2.02E-09
Ls source s1 2.92E-09
Rs s1 s 9.06E-04
Rg g1 g 1
.ENDS IPA95R450PFD7_L0
********************************************************************************
.SUBCKT IPA95R450PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=9.06E-04 Rg=1 Rdp=2.35E-04 Ls=2.92E-09 Ld=2.02E-09
.PARAM Lg=6.17E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPA95R450PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=9.06E-04 Rg=1 Rdp=2.35E-04 Ls=2.92E-09 Ld=2.02E-09
.PARAM Lg=6.17E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 68.879u
C_Czth2 0 1 704.908u
C_Czth3 0 2 627.667u
C_Czth4 0 3 3.343m
C_Czth5 0 4 9.274m
C_Czth6 0 5 18.0m
C_Czth7 0 6 500.0m
C_Czth8 0 7 600.0m
R_Rth1 Tj 1 {33.0m+lzth*8.56m}
R_Rth2 1 2 {46.92m+lzth*12.16m}
R_Rth3 2 3 {177.31m+lzth*45.97m}
R_Rth4 3 4 {242.69m+lzth*115.96m}
R_Rth5 4 5 {239.42m+lzth*111.68m}
R_Rth6 5 6 400.0m
R_Rth7 6 7 5.0
R_Rth8 5 Tcase {2.1+lzth*966.34m}
.ENDS
********************************************************************************
.SUBCKT IPB95R450PFD7_L0 drain gate source
.PARAM act=7.16
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 6.36E-09
Ld drain dd 2.56E-09
Ls source s1 4.29E-09
Rs s1 s 3.53E-03
Rg g1 g 1
.ENDS IPB95R450PFD7_L0
********************************************************************************
.SUBCKT IPB95R450PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=3.53E-03 Rg=1 Rdp=3.76E-04 Ls=4.29E-09 Ld=2.56E-09
.PARAM Lg=6.36E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPB95R450PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=3.53E-03 Rg=1 Rdp=3.76E-04 Ls=4.29E-09 Ld=2.56E-09
.PARAM Lg=6.36E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 68.879u
C_Czth2 0 1 704.908u
C_Czth3 0 2 627.667u
C_Czth4 0 3 3.343m
C_Czth5 0 4 7.728m
C_Czth6 0 Tcase 140.0m
C_Czth7 0 6 220.0m
C_Czth8 0 7 500.0m
R_Rth1 Tj 1 {33.0m+lzth*8.56m}
R_Rth2 1 2 {46.92m+lzth*12.16m}
R_Rth3 2 3 {177.31m+lzth*45.97m}
R_Rth4 3 4 {242.69m+lzth*199.13m}
R_Rth5 4 Tcase {239.42m+lzth*194.85m}
R_Rth6 Tcase 6 400.0m
R_Rth7 6 7 30.0
.ENDS
********************************************************************************
.SUBCKT IPD95R450PFD7_L0 drain gate source
.PARAM act=7.16
X1 dd g s cool_tech0a PARAMS: a={act}
Lg gate g1 4.06E-09
Ld drain dd 8.24E-11
Ls source s1 3.34E-09
Rs s1 s 2.31E-03
Rg g1 g 1
.ENDS IPD95R450PFD7_L0
********************************************************************************
.SUBCKT IPD95R450PFD7_L1 drain gate source PARAMS: dVth=0 dRdson=0
.PARAM Rs=2.31E-03 Rg=1 Rdp=2.38E-06 Ls=3.34E-09 Ld=8.24E-11
.PARAM Lg=4.06E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
X1 dd g s Tj Tj cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=0
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
E1 Tj w VALUE={TEMP}
R1 w 0 1u
.ENDS
********************************************************************************
.SUBCKT IPD95R450PFD7_L3 drain gate source Tj Tcase PARAMS: dVth=0 dRdson=0 Zthtype=0
.PARAM Rs=2.31E-03 Rg=1 Rdp=2.38E-06 Ls=3.34E-09 Ld=8.24E-11
.PARAM Lg=4.06E-09 act=7.16 Inn={1.0*7.16} Unn=10.0 Rmax=450.0m
.PARAM lzth={limit(Zthtype,0,1)}
X1 dd g s Tj 1 cool_tech PARAMS: a={act} dVth={dVth} dR={dRdson} Inn={Inn} Unn={Unn}
+Rmax={Rmax} Rs={Rs} Rdp={Rdp} heat=1
L_Ld drain ldrd {Ld}
R_Ld drain ldrd 10
R_Rd dd ldrd {Rdp}
L_Ls source lsrs {Ls}
R_Ls source lsrs 10
R_Rs s lsrs {Rs}
L_Lg gate lgrg {Lg}
R_Lg gate lgrg 10
R_Rg lgrg g {Rg}
C_Czth1 Tj 0 68.879u
C_Czth2 0 1 704.908u
C_Czth3 0 2 627.667u
C_Czth4 0 3 3.343m
C_Czth5 0 4 4.726m
C_Czth6 0 Tcase 42.5m
C_Czth7 0 6 65.0m
C_Czth8 0 7 90.0m
R_Rth1 Tj 1 {33.0m+lzth*8.56m}
R_Rth2 1 2 {46.92m+lzth*12.16m}
R_Rth3 2 3 {177.31m+lzth*45.97m}
R_Rth4 3 4 {242.69m+lzth*231.24m}
R_Rth5 4 Tcase {175.21m+lzth*226.95m}
R_Rth6 Tcase 6 500.0m
R_Rth7 6 7 50.0
.ENDS
********************************************************************************

View File

@ -0,0 +1,31 @@
%%%% Loss Table Calculation %%%%
clear all
close all
%%
V_in = [350, 400, 500, 600]; %Drain-SOurce Voltage [V]
I_D = [1, 2, 3, 4, 5]; %Drain Current [A]
Qg = 62e-9; %Q_GS + Q_GD [C]
I_g = 1.61; %Average Gate current [A]
T_sw = Qg/I_g; %Switching time [s]
E_sw = 1/2 * V_in' * I_D * T_sw; %Switching losses [W]
figure
colormap("parula")
surf(V_in, I_D, E_sw'*1e6)
xlabel("V_{DS}in V")
ylabel("I_D in A")
zlabel("E_{sw} in \mu J")
title("Switching Losses")
grid minor
E_copy = E_sw*1e6;
data = readtable("Diode_forward.csv");
figure
plot(data.x, data.y)
grid minor
xlabel("V_F in V")
ylabel("I_D in A")
title("Forwrd Characteristics Diode")

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,57 @@
<?xml version="1.0" encoding="UTF-8"?>
<SemiconductorLibrary xmlns="http://www.plexim.com/xml/semiconductors/" version="1.1">
<Package class="MOSFET with Diode" vendor="Vishay" partnumber="SiHB21N80AE">
<Variables/>
<SemiconductorData type="MOSFET with Diode">
<TurnOnLoss>
<ComputationMethod>Table only</ComputationMethod>
<CurrentAxis> -1 0 1 2 3 4 5</CurrentAxis>
<VoltageAxis> 0 350 400 500 600</VoltageAxis>
<TemperatureAxis> 25</TemperatureAxis>
<Energy scale="1e-06">
<Temperature>
<Voltage> 0 0 0 0 0 0 0</Voltage>
<Voltage> 0 0 13.6 27.1 40.7 54.25 67.8</Voltage>
<Voltage> 0 0 15.5 31 46.5 62 77.5</Voltage>
<Voltage> 0 0 19.38 38.8 58.1 77.5 96.9</Voltage>
<Voltage> 0 0 23.25 46.5 69.75 93 116.25</Voltage>
</Temperature>
</Energy>
</TurnOnLoss>
<TurnOffLoss>
<ComputationMethod>Table only</ComputationMethod>
<CurrentAxis> -1 0 1 2 3 4 5</CurrentAxis>
<VoltageAxis> 0 350 400 500 600</VoltageAxis>
<TemperatureAxis> 25</TemperatureAxis>
<Energy scale="1e-06">
<Temperature>
<Voltage> 0 0 0 0 0 0 0</Voltage>
<Voltage> 0 0 13.6 27.1 40.7 54.25 67.8</Voltage>
<Voltage> 0 0 15.5 31 46.5 62 77.5</Voltage>
<Voltage> 0 0 19.38 38.8 58.1 77.5 96.9</Voltage>
<Voltage> 0 0 23.25 46.5 69.75 93 116.3</Voltage>
</Temperature>
</Energy>
</TurnOffLoss>
<ConductionLoss>
<ComputationMethod>Table only</ComputationMethod>
<CurrentAxis> 0 5</CurrentAxis>
<TemperatureAxis> 25</TemperatureAxis>
<VoltageDrop scale="1">
<Temperature> 0 1.025</Temperature>
</VoltageDrop>
</ConductionLoss>
</SemiconductorData>
<ThermalModel>
<Branch type="Cauer">
<RCElement R="0.513" C="0.0037623"/>
<RCElement R="1.8087e-06" C="0.000833"/>
<RCElement R="0.0291832" C="0.0071784"/>
<RCElement R="0.15898" C="0.00097147"/>
</Branch>
</ThermalModel>
<Comment>
<Line>Simple Model for SiHB21N80AE</Line>
</Comment>
</Package>
</SemiconductorLibrary>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@ -0,0 +1,4 @@
6.7391 13.4783 20.2174 26.9565 33.6957
7.7019 15.4037 23.1056 30.8075 38.5093
9.6273 19.2547 28.8820 38.5093 48.1366
11.5528 23.1056 34.6584 46.2112 57.7640
1 6.7391 13.4783 20.2174 26.9565 33.6957
2 7.7019 15.4037 23.1056 30.8075 38.5093
3 9.6273 19.2547 28.8820 38.5093 48.1366
4 11.5528 23.1056 34.6584 46.2112 57.7640

View File

@ -0,0 +1,34 @@
%% Skript zur Berechnug des LC-Filters eines isolierten Buck-Converters
clear all
close all
%% Specs
V_in_min = 300; %Minimale Eingangsspannung [V]
V_in_max = 600; %Maximale Eingangsspannung [V]
V_out = 24; %Ausgangsspannung [V]
P_out_n = 1000; %Nominelle Ausgangsleistung [W]
P_out_max = 1E3; %Maximale Ausgangsleistung [W]
I_out_max = P_out_max/V_out;%Nomineller Ausgangsstrom [A]
dV_out = 0.25; %Spannungsripple am Ausgang [V]
dI = 0.2*I_out_max; %Gewünschter Stromripple der Induktivität [A]
alpha_max = 0.5; %Maximaler Tastgrad
f_s = 200E3; %Schaltfrequenz [Hz]
V_d = 0.7; %Durchlassspannung der Gleichrichterdioden [V]
dV_ESR = 0.05; %Spannungsabfall am ESR des Ausgangskondensator [V]
n = 12; %Np/Ns
%% Berechnung der Induktivität
L_min = ((V_in_max/n - V_out)*alpha_max) / (f_s*dI); %Minimale Filterinduktivität [H]
dI_L = (V_in_max/n-V_out)/L_min*alpha_max /f_s; %Maximaler Stromripple über L [A]
%Hier fehlen noch Berechnungen zu Copper Losses und maximaler Flux density
%B_max = n_L *I_max*mu_0/l_gap n_L und nicht n!
I_max = I_out_max + 1/2 * dI_L; %Maximaler Strom durch L [A]
%% Berechnug des Kondensators
C_min = dI_L / (8*dV_out*f_s); %Minimaler Glättungskondensator [F]
%% Alternative Berechnung des Kondensators
C_out_min = I_out_max*alpha_max/(dV_out*f_s);
ESR_max = dV_ESR / dI_L;

View File

@ -0,0 +1,75 @@
%% Skript zu Auslegung eines Trsanformators für einen SMPS
clear all
close all
%%
p = 1.724e-6; %Spez. Widerstand der Litze [Ohm cm]
D_max = 0.75; %Maximaler Duty Cycle
V_in_min = 350; %Minimale Eingangsspannung [V]
V_in_nom = 511; %Nominelle Eingangsspannung [V]
V_FET = 0.3; %Spannungsabfall an FETs
V_D = 0.7; %Durchlassspannung Diode [V]
V_out = 24; %Ausgangsspannung
P_out = 1e3; %Maximale <Ausgangsleistung
P_loss = 0.01 * P_out; %Akzeptable Verlustleistung [W]
I_out = P_out/V_out; %Ausgangsstrom [A]
n = ((V_in_min-2*V_FET)*D_max)/(V_out+V_D); %Windungszahlverhältnis
D_nom = n * (V_out+V_D)/(V_in_nom-2*V_FET); %Nominaler Duty cycle
fs = 100e3; %Schaltfrequenz [Hz]
lam1 = V_in_nom *D_nom/fs; % Vs pro Schaltperiode
I_1_rms = I_out/n * sqrt(D_nom);
I_2_rms = 0.5 * I_out * sqrt(1+D_nom);
I_tot = I_1_rms + 2*I_2_rms / n;
K_fe = 15.76; %Core loss factor (Curve Fitting) [W/Tcm^3]
Ku = 0.3; %Füllfaktor der Wicklung
beta = 2.39; %Wert aus Curve Fitting
Kg_fe = (p*lam1*lam1*I_tot*I_tot*power(K_fe, 2/beta)) / (4*Ku*power(P_loss, (beta+2)/beta)) * 1e8;
%Angenommen EE40 Kern PC47 --> EE40 könnte Probleme mit Sättigung
%verursachen
Ac = 2.4; %[cm^2]
Wa = 2.29; %[cm^2]
MLT = 7.7; %[cm]
lm = 9.86; %[cm]
A_l = 5340;
%Peak AC Flux density [T]
dB = power((1e8*p*lam1*lam1*I_tot*I_tot/(2*Ku)) * (MLT/(Wa*lm*Ac*Ac*Ac) * 1/(beta*K_fe)),1/(beta+2));
%Primary turns
n1 = lam1 /(2*dB*Ac)*1e4;
n2 = n1/n;
%Runden
n1_r = round(n1);
n2_r = round(n2);
n_r = n1_r / n2_r;
%Area for windings alpha*Wa ergibt die verfügbare Fläche der Windung
alpha1 = I_1_rms/I_tot;
alpha2 = I_2_rms/(n_r*I_tot);
%Wire sizes
Aw1 = alpha1*Ku*Wa/n1_r; %[cm^2] Beispiel AWG 23
Aw2 = alpha2*Ku*Wa/n2_r; %[cm^2] Beispiel AWG 14
%DC Resistance
R1 = p * n1_r*MLT/Aw1;
R2 = p* n2*MLT/Aw2;
%Verluste berechnen
B_new = lam1/(2*n1_r*Ac) *1e4;
P_fe = K_fe * power(B_new,beta) * Ac * lm; %Core losses
P_cu = (p*lam1*lam1*I_tot*I_tot)/(4*Ku) * MLT/(Wa*Ac*Ac) * 1/(B_new*B_new) * 1e8;
P_tot = P_fe + P_cu;
%Magnetizing Inductance berechnen
Lm = A_l * n1_r * n1_r *1e-9;
I_1_rms / (Aw1*100)
I_2_rms / (Aw2*100)

View File

@ -0,0 +1,42 @@
clear all
close all
D_max = 0.75; %Maximaler Duty Cycle
V_in_min = 350; %Minimale Eingangsspannung [V]
V_in_nom = 511; %Nominelle Eingangsspannung [V]
V_FET = 0.3; %Spannungsabfall an FETs
V_D = 0.7; %Durchlassspannung Diode [V]
V_out = 24; %Ausgangsspannung
P_out = 1e3; %Maximale <Ausgangsleistung
eta = 0.95; %Effizienz
P_loss = (1-eta) * P_out; %Akzeptable Verlustleistung [W]
I_out = P_out/V_out; %Ausgangsstrom [A]
n = ceil(((V_in_min-2*V_FET)*D_max)/(V_out+V_D)); %Windungszahlverhältnis
D_nom = n * (V_out+V_D)/(V_in_nom-2*V_FET); %Nominaler Duty cycle
fs = 100e3; %Schaltfrequenz [Hz]
lam_max = V_in_nom * D_max /fs; %Maximaler Fluss [Vs]
delta_I_out = 0.2 * I_out; %Maximaler Rippel am Ausgang [A]
L_m = (V_in_nom*(1-D_nom)*n) / (delta_I_out*0.5*fs); %Minimale Magnetisierungsinduktivität [H]
%Calculate Secondary RMS Current
I_PS = I_out +delta_I_out/2;
I_MS = I_out -delta_I_out/2;
I_MS2 = I_PS - delta_I_out/4;
I_SRMS1 = sqrt((D_max/2)*(I_PS*I_MS+power(I_PS-I_MS,2)/3)); %Sekundärer RMS Strom, wenn Energie übertragen wird
I_SRMS2 = sqrt((1-D_max)/2 * (I_PS*I_MS+power(I_PS-I_MS,2)/3)); %Sekundärer RMS Strom, wenn beide Sekundärdioden leiten
I_SRMS3 = delta_I_out/2 * sqrt((1-D_max)/6);
I_SRMS = sqrt(I_SRMS1*I_SRMS1 + I_SRMS2*I_SRMS2 + I_SRMS3*I_SRMS3); %Total secondary RMS current
%Calculate primary RMS Currents
delta_I_m = V_in_min * D_max /(L_m*fs);
I_PP = 1/n * (I_out/eta + delta_I_out/2) + delta_I_m;
I_MP = 1/n * (I_out/eta - delta_I_out/2) + delta_I_m;
I_PRMS1 = sqrt(D_max * (I_PP*I_MP+power(I_PP-I_MP,2)/3));
I_MP2 = I_PP - delta_I_out/(2*n);
I_PRMS2 = sqrt((1-D_max)*(I_PP*I_MP2+power(I_PP-I_MP2,2)/3));
I_PRMS = sqrt(I_PRMS1*I_PRMS1 + I_PRMS2*I_PRMS2); %Total primary RMS current

View File

@ -0,0 +1,53 @@
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 16 15:27:04 2025
@author: Vincents Laptop
"""
import femmt as fmt
import materialdatabase as mdb
geo = fmt.MagneticComponent(simulation_type=fmt.SimulationType.FreqDomain,
component_type=fmt.ComponentType.Transformer,
working_directory=r"C:\Users\Vincents Laptop\OneDrive\Dokumente\TU Berlin\Fasttube\Electronics\DCDC\Konzept\PSFB\Trafo\FEMMT",
verbosity=fmt.Verbosity.ToConsole)
core_dimensions = fmt.dtos.SingleCoreDimensions(core_inner_diameter=0.0156, window_w=0.0141, window_h=0.02805, core_h=0.0156)
core = fmt.Core(core_type=fmt.CoreType.Single,
core_dimensions=core_dimensions,
detailed_core_model=False,
material=mdb.Material.N95, temperature=50, frequency=1000,
permeability_datasource=fmt.MaterialDataSource.Measurement,
permeability_datatype=fmt.MeasurementDataType.ComplexPermeability,
permeability_measurement_setup=mdb.MeasurementSetup.LEA_LK,
permittivity_datasource=fmt.MaterialDataSource.Measurement,
permittivity_datatype=fmt.MeasurementDataType.ComplexPermittivity,
permittivity_measurement_setup=mdb.MeasurementSetup.LEA_LK,
mdb_verbosity=fmt.Verbosity.Silent)
geo.set_core(core)
insulation = fmt.Insulation(flag_insulation=True)
insulation.add_core_insulations(0.001, 0.001, 0.001, 0.001)
insulation.add_winding_insulations([[0.0001, 0.001], [0.0001, 0.001]])
geo.set_insulation(insulation)
winding_window = fmt.WindingWindow(core, insulation)
vww = winding_window.split_window(fmt.WindingWindowSplit.NoSplit)
winding1 = fmt.Conductor(winding_number=0, conductivity=fmt.Conductivity.Copper)
winding1.set_litz_round_conductor(conductor_radius=None, number_strands=100, strand_radius=0.0001007/2,
fill_factor=0.7, conductor_arrangement=fmt.ConductorArrangement.Square)
vww.set_winding(winding1, 38, None, fmt.Align.CenterOnHorizontalAxis,
placing_strategy=fmt.ConductorDistribution.VerticalDownward_HorizontalRightward,
zigzag=False)
geo.set_winding_windows([winding_window])
geo.create_model(freq=100000, pre_visualize_geometry=True, save_png=False)
geo.single_simulation(freq=100000, current=[4.5], phi_deg=[0],
plot_interpolation=False, show_fem_simulation_results=True)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,272 @@
{
"core_type": "Single",
"p_outer": [
[
0,
-0.017925
],
[
0.023247580519271248,
-0.017925
],
[
0,
0.017925
],
[
0.023247580519271248,
0.017925
]
],
"p_ww": [
[
0.0078,
-0.014025
],
[
0.0219,
-0.014025
],
[
0.0078,
0.014025
],
[
0.0219,
0.014025
]
],
"p_air_gap_center": [],
"lengths_air_gap": [],
"p_cond_center_1": [
[
0.009401797604799866,
0.012384154491197478,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.011080559281597744,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.009776964071998009,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.008473368862398275,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.00716977365279854,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.0058661784431988055,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.004562583233599071,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.0032589880239993364,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.001955392814399602,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
0.0006517976047998675,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.0006517976047998668,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.001955392814399601,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.0032589880239993355,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.00456258323359907,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.005866178443198805,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.007169773652798539,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.008473368862398273,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.009776964071998007,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.011080559281597742,
0.0,
7.522470059998339e-05
],
[
0.009401797604799866,
-0.012384154491197476,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.012384154491197478,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.011080559281597744,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.009776964071998009,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.008473368862398275,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.00716977365279854,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.0058661784431988055,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.004562583233599071,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.0032589880239993364,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.001955392814399602,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
0.0006517976047998675,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.0006517976047998668,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.001955392814399601,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.0032589880239993355,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.00456258323359907,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.005866178443198805,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.007169773652798539,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.008473368862398273,
0.0,
7.522470059998339e-05
],
[
0.010705392814399601,
-0.009776964071998007,
0.0,
7.522470059998339e-05
]
],
"radius_cond_1": 0.0006017976047998676
}

View File

@ -0,0 +1 @@
{}

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

View File

@ -0,0 +1,14 @@
x, y
0.1002494289906044, 80.71024122016841
0.10802869649936904, 94.89628792946644
0.11816471441148023, 117.0179072146259
0.1286093870259706, 142.92852915528385
0.13928158865877746, 176.24711912279753
0.15425950151920617, 230.1145910535005
0.16831339878741391, 281.0675803330006
0.18641330305011272, 356.6345145611606
0.20852721551354678, 461.2209191017241
0.22752520290227124, 574.1807178652496
0.24702019565443625, 701.3183488513777
0.26751830544534283, 840.4440174219649
0.2970254238548787, 1097.3140005634307
1 x y
2 0.1002494289906044 80.71024122016841
3 0.10802869649936904 94.89628792946644
4 0.11816471441148023 117.0179072146259
5 0.1286093870259706 142.92852915528385
6 0.13928158865877746 176.24711912279753
7 0.15425950151920617 230.1145910535005
8 0.16831339878741391 281.0675803330006
9 0.18641330305011272 356.6345145611606
10 0.20852721551354678 461.2209191017241
11 0.22752520290227124 574.1807178652496
12 0.24702019565443625 701.3183488513777
13 0.26751830544534283 840.4440174219649
14 0.2970254238548787 1097.3140005634307

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

View File

@ -0,0 +1,24 @@
x, y
0.09980911940244717, 63.09573444801933
0.10369689340507997, 67.55066513294419
0.11002434828571836, 78.75829328777596
0.11496712074250538, 87.24503892398667
0.12013194404476639, 100
0.126733735451327, 112.68130079648544
0.1331884038422887, 124.82348288165197
0.13997181456763289, 143.07229891937573
0.14879674393106349, 163.98903672222477
0.1560766123737784, 184.78497974222907
0.16496861828626572, 208.21811885006582
0.17270939514740014, 234.62288481422624
0.1815056471454183, 259.9051079393097
0.19002238643913313, 292.8644564625237
0.19931921604642963, 330.0034791125285
0.20907089227662543, 371.8522129376553
0.2209820914113209, 426.2158829015325
0.2317936220347043, 480.265601054672
0.24406496195855046, 532.0175096324757
0.2604460790820152, 630.9573444801937
0.2716269754224496, 698.9473207273486
0.2838296410465342, 774.263682681127
0.2977159828600288, 857.6958985908946
1 x y
2 0.09980911940244717 63.09573444801933
3 0.10369689340507997 67.55066513294419
4 0.11002434828571836 78.75829328777596
5 0.11496712074250538 87.24503892398667
6 0.12013194404476639 100
7 0.126733735451327 112.68130079648544
8 0.1331884038422887 124.82348288165197
9 0.13997181456763289 143.07229891937573
10 0.14879674393106349 163.98903672222477
11 0.1560766123737784 184.78497974222907
12 0.16496861828626572 208.21811885006582
13 0.17270939514740014 234.62288481422624
14 0.1815056471454183 259.9051079393097
15 0.19002238643913313 292.8644564625237
16 0.19931921604642963 330.0034791125285
17 0.20907089227662543 371.8522129376553
18 0.2209820914113209 426.2158829015325
19 0.2317936220347043 480.265601054672
20 0.24406496195855046 532.0175096324757
21 0.2604460790820152 630.9573444801937
22 0.2716269754224496 698.9473207273486
23 0.2838296410465342 774.263682681127
24 0.2977159828600288 857.6958985908946

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,15 @@
clear all
close all
data = readtable("Losses_PC95_100kHz_60C.csv");
B = data.x;
P = data.y;
figure
loglog(B*1e3, P);
grid minor
xlabel("B_{max} in mT")
ylabel("Core Losses in kW/m^3")
title("Core Losses")

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,26 @@
Version 4
SymbolType BLOCK
TEXT -64 -64 Left 0 My_custom_magnetic
TEXT -64 64 Left 0 Made with OpenMagnetics
RECTANGLE Normal -72 -72 72 72
SYMATTR Prefix X
SYMATTR Value My_custom_magnetic
SYMATTR ModelFile My_custom_magnetic.cir
PIN -72 -16 LEFT 8
PINATTR PinName P1+
PINATTR SpiceOrder 1
PIN -72 16 LEFT 8
PINATTR PinName P1-
PINATTR SpiceOrder 2
PIN 72 -48 RIGHT 8
PINATTR PinName P2+
PINATTR SpiceOrder 3
PIN 72 -16 RIGHT 8
PINATTR PinName P2-
PINATTR SpiceOrder 4
PIN 72 16 RIGHT 8
PINATTR PinName P3+
PINATTR SpiceOrder 5
PIN 72 48 RIGHT 8
PINATTR PinName P3-
PINATTR SpiceOrder 6

View File

@ -0,0 +1,56 @@
* Magnetic model made with OpenMagnetics
* My_custom_magnetic
.subckt My_custom_magnetic P1+ P1- P2+ P2- P3+ P3-
Lladder1_0 P1+ Node_Lladder_1_0 0.00000044286965416607
Rladder1_0 Node_Lladder_1_0 Node_R_Lmag_1 7.18538503187492150204
Lladder1_2 P1+ Node_Lladder_1_2 0.69103838050273735938
Rladder1_2 Node_Lladder_1_2 Node_Lladder_1_0 7.20623790440508482646
Lladder1_4 P1+ Node_Lladder_1_4 0.71311188379117107505
Rladder1_4 Node_Lladder_1_4 Node_Lladder_1_2 7.20106752103035407941
Lladder1_6 P1+ Node_Lladder_1_6 0.62261277835029316119
Rladder1_6 Node_Lladder_1_6 Node_Lladder_1_4 7.17401798641782129096
Lladder1_8 P1+ Node_Lladder_1_8 0.00000000471930635758
Rladder1_8 Node_Lladder_1_8 Node_Lladder_1_6 0.25621019747340834094
Rdc1 P1+ Node_R_Lmag_1 {Rdc_1_Value}
Lmag_1 P1- Node_R_Lmag_1 {NumberTurns_1**2*Permeance}
Lladder2_0 P2+ Node_Lladder_2_0 0.97122895822658428244
Rladder2_0 Node_Lladder_2_0 Node_R_Lmag_2 -2.28919229515785715989
Lladder2_2 P2+ Node_Lladder_2_2 1.85137554136712623176
Rladder2_2 Node_Lladder_2_2 Node_Lladder_2_0 -3.47356156253973402670
Lladder2_4 P2+ Node_Lladder_2_4 1.91471991153135512320
Rladder2_4 Node_Lladder_2_4 Node_Lladder_2_2 -1.43386338614170938399
Lladder2_6 P2+ Node_Lladder_2_6 5.29693060561242479167
Rladder2_6 Node_Lladder_2_6 Node_Lladder_2_4 2.34627597374724494728
Lladder2_8 P2+ Node_Lladder_2_8 8.69104967031313790926
Rladder2_8 Node_Lladder_2_8 Node_Lladder_2_6 4.84126459776134865365
Rdc2 P2+ Node_R_Lmag_2 {Rdc_2_Value}
Lmag_2 P2- Node_R_Lmag_2 {NumberTurns_2**2*Permeance}
K Lmag_1 Lmag_2 {CouplingCoefficient_12_Value}
Lladder3_0 P3+ Node_Lladder_3_0 0.97122812370706945728
Rladder3_0 Node_Lladder_3_0 Node_R_Lmag_3 -2.28918907872464494346
Lladder3_2 P3+ Node_Lladder_3_2 1.85137467345817796627
Rladder3_2 Node_Lladder_3_2 Node_Lladder_3_0 -3.47356077970027499191
Lladder3_4 P3+ Node_Lladder_3_4 1.91471592787993394325
Rladder3_4 Node_Lladder_3_4 Node_Lladder_3_2 -1.43386461402979747959
Lladder3_6 P3+ Node_Lladder_3_6 5.29692655057462946644
Rladder3_6 Node_Lladder_3_6 Node_Lladder_3_4 2.34627642393589308512
Lladder3_8 P3+ Node_Lladder_3_8 8.69104819886462642842
Rladder3_8 Node_Lladder_3_8 Node_Lladder_3_6 4.84126750951934425871
Rdc3 P3+ Node_R_Lmag_3 {Rdc_3_Value}
Lmag_3 P3- Node_R_Lmag_3 {NumberTurns_3**2*Permeance}
K2 Lmag_1 Lmag_3 {CouplingCoefficient_13_Value}
.param MagnetizingInductance_Value=0.005382
.param Permeance=MagnetizingInductance_Value/NumberTurns_1**2
.param Rdc_1_Value=0.029266
.param NumberTurns_1=34
.param Rdc_2_Value=0.000327
.param NumberTurns_2=3
.param Llk_2_Value=0.000007
.param CouplingCoefficient_12_Value=0.999368
.param Rdc_3_Value=0.000390
.param NumberTurns_3=3
.param Llk_3_Value=0.000000
.param CouplingCoefficient_13_Value=1.000000
.ends My_custom_magnetic

View File

@ -0,0 +1,26 @@
Version 4
SymbolType BLOCK
TEXT -64 -64 Left 0 My_custom_magnetic
TEXT -64 64 Left 0 Made with OpenMagnetics
RECTANGLE Normal -72 -72 72 72
SYMATTR Prefix X
SYMATTR Value My_custom_magnetic
SYMATTR ModelFile My_custom_magnetic.cir
PIN -72 -16 LEFT 8
PINATTR PinName P1+
PINATTR SpiceOrder 1
PIN -72 16 LEFT 8
PINATTR PinName P1-
PINATTR SpiceOrder 2
PIN 72 -48 RIGHT 8
PINATTR PinName P2+
PINATTR SpiceOrder 3
PIN 72 -16 RIGHT 8
PINATTR PinName P2-
PINATTR SpiceOrder 4
PIN 72 16 RIGHT 8
PINATTR PinName P3+
PINATTR SpiceOrder 5
PIN 72 48 RIGHT 8
PINATTR PinName P3-
PINATTR SpiceOrder 6

View File

@ -0,0 +1,55 @@
* Magnetic model made with OpenMagnetics
* My_custom_magnetic
.subckt My_custom_magnetic P1+ P1- P2+ P2- P3+ P3-
Lladder1_0 P1+ Node_Lladder_1_0 0.00000030421479804392
Rladder1_0 Node_Lladder_1_0 Node_R_Lmag_1 0.13419540110906566510
Lladder1_2 P1+ Node_Lladder_1_2 0.00079916596841206702
Rladder1_2 Node_Lladder_1_2 Node_Lladder_1_0 0.13462143163991721617
Lladder1_4 P1+ Node_Lladder_1_4 0.00101641542806106067
Rladder1_4 Node_Lladder_1_4 Node_Lladder_1_2 0.13471470966351842269
Lladder1_6 P1+ Node_Lladder_1_6 0.00103991519064223050
Rladder1_6 Node_Lladder_1_6 Node_Lladder_1_4 0.13470254028263245472
Lladder1_8 P1+ Node_Lladder_1_8 0.00101434626391949949
Rladder1_8 Node_Lladder_1_8 Node_Lladder_1_6 0.13467810527014462130
Rdc1 P1+ Node_R_Lmag_1 {Rdc_1_Value}
Lmag_1 P1- Node_R_Lmag_1 {NumberTurns_1**2*Permeance}
Lladder2_0 P2+ Node_Lladder_2_0 0.97120103816532932228
Rladder2_0 Node_Lladder_2_0 Node_R_Lmag_2 -2.28908468474037718465
Lladder2_2 P2+ Node_Lladder_2_2 1.85134650449073490108
Rladder2_2 Node_Lladder_2_2 Node_Lladder_2_0 -3.47353537220388908224
Lladder2_4 P2+ Node_Lladder_2_4 1.91458663291217057179
Rladder2_4 Node_Lladder_2_4 Node_Lladder_2_2 -1.43390446656140468917
Lladder2_6 P2+ Node_Lladder_2_6 5.29679493855992156170
Rladder2_6 Node_Lladder_2_6 Node_Lladder_2_4 2.34629103552580886571
Lladder2_8 P2+ Node_Lladder_2_8 8.69100044090401802066
Rladder2_8 Node_Lladder_2_8 Node_Lladder_2_6 4.84136201502596108526
Rdc2 P2+ Node_R_Lmag_2 {Rdc_2_Value}
Lmag_2 P2- Node_R_Lmag_2 {NumberTurns_2**2*Permeance}
K Lmag_1 Lmag_2 {CouplingCoefficient_12_Value}
Lladder3_0 P3+ Node_Lladder_3_0 0.97123001148963794549
Rladder3_0 Node_Lladder_3_0 Node_R_Lmag_3 -2.28919635467207527313
Lladder3_2 P3+ Node_Lladder_3_2 1.85137663675921615436
Rladder3_2 Node_Lladder_3_2 Node_Lladder_3_0 -3.47356255053403906174
Lladder3_4 P3+ Node_Lladder_3_4 1.91472493933481402451
Rladder3_4 Node_Lladder_3_4 Node_Lladder_3_2 -1.43386183641505660091
Lladder3_6 P3+ Node_Lladder_3_6 5.29693572351747388183
Rladder3_6 Node_Lladder_3_6 Node_Lladder_3_4 2.34627540554273572582
Lladder3_8 P3+ Node_Lladder_3_8 8.69105152744398168352
Rladder3_8 Node_Lladder_3_8 Node_Lladder_3_6 4.84126092279998587742
Rdc3 P3+ Node_R_Lmag_3 {Rdc_3_Value}
Lmag_3 P3- Node_R_Lmag_3 {NumberTurns_3**2*Permeance}
K Lmag_1 Lmag_3 {CouplingCoefficient_13_Value}
.param MagnetizingInductance_Value=0.007944
.param Permeance=MagnetizingInductance_Value/NumberTurns_1**2
.param Rdc_1_Value=0.034010
.param NumberTurns_1=38
.param Rdc_2_Value=0.000651
.param NumberTurns_2=3
.param Llk_2_Value=0.000019
.param CouplingCoefficient_12_Value=0.998823.param Rdc_3_Value=0.000707
.param NumberTurns_3=3
.param Llk_3_Value=0.314961
.param CouplingCoefficient_13_Value=-nan
.ends My_custom_magnetic

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 532 KiB

View File

@ -0,0 +1,26 @@
Version 4
SymbolType BLOCK
TEXT -64 -64 Left 0 My_custom_magnetic
TEXT -64 64 Left 0 Made with OpenMagnetics
RECTANGLE Normal -72 -72 72 72
SYMATTR Prefix X
SYMATTR Value My_custom_magnetic
SYMATTR ModelFile My_custom_magnetic.cir
PIN -72 -16 LEFT 8
PINATTR PinName P1+
PINATTR SpiceOrder 1
PIN -72 16 LEFT 8
PINATTR PinName P1-
PINATTR SpiceOrder 2
PIN 72 -48 RIGHT 8
PINATTR PinName P2+
PINATTR SpiceOrder 3
PIN 72 -16 RIGHT 8
PINATTR PinName P2-
PINATTR SpiceOrder 4
PIN 72 16 RIGHT 8
PINATTR PinName P3+
PINATTR SpiceOrder 5
PIN 72 48 RIGHT 8
PINATTR PinName P3-
PINATTR SpiceOrder 6

View File

@ -0,0 +1,55 @@
* Magnetic model made with OpenMagnetics
* My_custom_magnetic
.subckt My_custom_magnetic P1+ P1- P2+ P2- P3+ P3-
Lladder1_0 P1+ Node_Lladder_1_0 0.00000059114069486398
Rladder1_0 Node_Lladder_1_0 Node_R_Lmag_1 4.66707896456149029518
Lladder1_2 P1+ Node_Lladder_1_2 1.32519224173765315378
Rladder1_2 Node_Lladder_1_2 Node_Lladder_1_0 4.71078615745042128538
Lladder1_4 P1+ Node_Lladder_1_4 1.25692319041441580296
Rladder1_4 Node_Lladder_1_4 Node_Lladder_1_2 4.58666519054944465950
Lladder1_6 P1+ Node_Lladder_1_6 0.74095390834172325523
Rladder1_6 Node_Lladder_1_6 Node_Lladder_1_4 4.45315927559595525764
Lladder1_8 P1+ Node_Lladder_1_8 0.00000000205455546206
Rladder1_8 Node_Lladder_1_8 Node_Lladder_1_6 0.03324894304252915683
Rdc1 P1+ Node_R_Lmag_1 {Rdc_1_Value}
Lmag_1 P1- Node_R_Lmag_1 {NumberTurns_1**2*Permeance}
Lladder2_0 P2+ Node_Lladder_2_0 0.97121844603239715354
Rladder2_0 Node_Lladder_2_0 Node_R_Lmag_2 -2.28915177870691799455
Lladder2_2 P2+ Node_Lladder_2_2 1.85136460867378715989
Rladder2_2 Node_Lladder_2_2 Node_Lladder_2_0 -3.47355170159003812103
Lladder2_4 P2+ Node_Lladder_2_4 1.91466973071238300008
Rladder2_4 Node_Lladder_2_4 Node_Lladder_2_2 -1.43387885333313214176
Lladder2_6 P2+ Node_Lladder_2_6 5.29687952552585272770
Rladder2_6 Node_Lladder_2_6 Node_Lladder_2_4 2.34628164465407973438
Lladder2_8 P2+ Node_Lladder_2_8 8.69103113491807377500
Rladder2_8 Node_Lladder_2_8 Node_Lladder_2_6 4.84130127638176688265
Rdc2 P2+ Node_R_Lmag_2 {Rdc_2_Value}
Lmag_2 P2- Node_R_Lmag_2 {NumberTurns_2**2*Permeance}
K Lmag_1 Lmag_2 {CouplingCoefficient_12_Value}
Lladder3_0 P3+ Node_Lladder_3_0 0.97123242766796202829
Rladder3_0 Node_Lladder_3_0 Node_R_Lmag_3 -2.28920566718598195166
Lladder3_2 P3+ Node_Lladder_3_2 1.85137914958015414868
Rladder3_2 Node_Lladder_3_2 Node_Lladder_3_0 -3.47356481701222108427
Lladder3_4 P3+ Node_Lladder_3_4 1.91473647315094552823
Rladder3_4 Node_Lladder_3_4 Node_Lladder_3_2 -1.43385828135297010988
Lladder3_6 P3+ Node_Lladder_3_6 5.29694746402894978132
Rladder3_6 Node_Lladder_3_6 Node_Lladder_3_4 2.34627410210733700069
Lladder3_8 P3+ Node_Lladder_3_8 8.69105578771541154026
Rladder3_8 Node_Lladder_3_8 Node_Lladder_3_6 4.84125249238391663908
Rdc3 P3+ Node_R_Lmag_3 {Rdc_3_Value}
Lmag_3 P3- Node_R_Lmag_3 {NumberTurns_3**2*Permeance}
K Lmag_1 Lmag_3 {CouplingCoefficient_13_Value}
.param MagnetizingInductance_Value=0.009361
.param Permeance=MagnetizingInductance_Value/NumberTurns_1**2
.param Rdc_1_Value=0.035749
.param NumberTurns_1=38
.param Rdc_2_Value=0.000649
.param NumberTurns_2=3
.param Llk_2_Value=0.000009
.param CouplingCoefficient_12_Value=0.999507.param Rdc_3_Value=0.000706
.param NumberTurns_3=3
.param Llk_3_Value=180.000026
.param CouplingCoefficient_13_Value=-nan
.ends My_custom_magnetic

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 560 KiB

View File

@ -0,0 +1,42 @@
Version 4
SHEET 1 880 680
WIRE 592 64 256 64
WIRE 216 80 208 80
WIRE 256 80 256 64
WIRE 256 80 216 80
WIRE 16 96 -80 96
WIRE 16 112 16 96
WIRE 72 112 16 112
WIRE 80 112 72 112
WIRE 216 112 208 112
WIRE 384 112 216 112
WIRE 72 144 16 144
WIRE 80 144 72 144
WIRE 216 144 208 144
WIRE 352 144 216 144
WIRE 384 144 384 112
WIRE 592 144 384 144
WIRE 216 176 208 176
WIRE 272 176 216 176
WIRE -80 208 -80 176
WIRE 16 208 16 144
WIRE 16 208 -80 208
WIRE -80 224 -80 208
WIRE 272 224 272 176
WIRE 352 224 272 224
FLAG -80 224 0
SYMBOL voltage -80 80 R0
WINDOW 3 -253 -34 Left 2
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V1
SYMATTR Value PULSE(-300 300 0 5n 5n 5u 10u)
SYMBOL My_custom_magnetic 144 128 R0
SYMATTR InstName U1
SYMBOL res 576 48 R0
SYMATTR InstName R1
SYMATTR Value 100
SYMBOL res 336 128 R0
SYMATTR InstName R2
SYMATTR Value 100
TEXT -328 264 Left 2 !.tran 1m

View File

@ -0,0 +1,14 @@
LTspice 24.0.12 for Windows
Circuit: * C:\Users\Vincents Laptop\Documents\TU Berlin\Fasttube\Electronics\DCDC\Konzept\PSFB\Trafo\Open Magnetics\Sim_Trafo.asc
Start Time: Sat May 10 23:40:16 2025
solver = Normal
Maximum thread count: 16
tnom = 27
temp = 27
method = modified trap
WARNING: Node N003 is floating.
WARNING: Node N005 is floating.
Direct Newton iteration for .op point succeeded.
Total elapsed time: 0.349 seconds.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Literatur/LLC_und_PSFB.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

5181
Simulationen/PSFB.plecs Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff